**SPEC CPU®2017 Floating Point Speed Result**

**Hewlett Packard Enterprise**  
(Test Sponsor: HPE)  
ProLiant DL365 Gen11  
(3.25 GHz, AMD EPYC 9354)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3</th>
<th>Test Date:</th>
<th>Jan-2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
<td>Hardware Availability:</td>
<td>Dec-2022</td>
</tr>
<tr>
<td>Tested by:</td>
<td>HPE</td>
<td>Software Availability:</td>
<td>Nov-2022</td>
</tr>
</tbody>
</table>

| SPECspeed®2017_fp_base = 319 | SPECspeed®2017_fp_peak = 324 |

<table>
<thead>
<tr>
<th>-threads-</th>
<th>603.bwaves_s</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads</td>
<td>0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700</td>
<td></td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>619.libm_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>644.nab_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>654.roms_s</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

**Hardware**

<table>
<thead>
<tr>
<th>CPU Name:</th>
<th>AMD EPYC 9354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max MHz:</td>
<td>3800</td>
</tr>
<tr>
<td>Nominal:</td>
<td>3250</td>
</tr>
<tr>
<td>Enabled:</td>
<td>64 cores, 2 chips</td>
</tr>
<tr>
<td>Orderable:</td>
<td>1.2 chips</td>
</tr>
<tr>
<td>Cache L1:</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>L2:</td>
<td>1 MB I+D on chip per core</td>
</tr>
<tr>
<td>L3:</td>
<td>256 MB I+D on chip per chip, 32 MB shared / 4 cores</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
<tr>
<td>Memory:</td>
<td>1536 GB (24 x 64 GB 2Rx4 PC5-4800B-R)</td>
</tr>
<tr>
<td>Storage:</td>
<td>1 x 480 GB SATA SSD</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
</tbody>
</table>

**Software**

<table>
<thead>
<tr>
<th>OS:</th>
<th>Ubuntu 22.04.1 LTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler:</td>
<td>C/C++/Fortran: Version 4.0.0 of AOCC</td>
</tr>
<tr>
<td>Parallel:</td>
<td>Yes</td>
</tr>
<tr>
<td>Firmware:</td>
<td>HPE BIOS Version v1.12 11/24/2022 released Nov-2022</td>
</tr>
<tr>
<td>File System:</td>
<td>ext4</td>
</tr>
<tr>
<td>System State:</td>
<td>Run level 5 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers:</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers:</td>
<td>64-bit</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
<tr>
<td>Power Management:</td>
<td>BIOS and OS set to prefer performance at the cost of additional power usage</td>
</tr>
</tbody>
</table>
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Base</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Peak</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>64</td>
<td>34.6</td>
<td>1710</td>
<td>34.6</td>
<td>1700</td>
<td>34.5</td>
<td>1710</td>
<td>64</td>
<td>34.4</td>
<td>1710</td>
<td>34.6</td>
<td>1700</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>64</td>
<td>35.1</td>
<td>475</td>
<td>35.2</td>
<td>473</td>
<td>35.2</td>
<td>473</td>
<td>64</td>
<td>35.1</td>
<td>474</td>
<td>35.1</td>
<td>475</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>64</td>
<td>26.2</td>
<td>200</td>
<td>26.5</td>
<td>197</td>
<td>26.5</td>
<td>198</td>
<td>64</td>
<td>26.2</td>
<td>200</td>
<td>26.5</td>
<td>197</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>64</td>
<td>33.9</td>
<td>179</td>
<td>72.8</td>
<td>182</td>
<td>72.9</td>
<td>181</td>
<td>64</td>
<td>64.9</td>
<td>204</td>
<td>64.6</td>
<td>205</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>64</td>
<td>43.7</td>
<td>203</td>
<td>43.7</td>
<td>203</td>
<td>43.9</td>
<td>202</td>
<td>64</td>
<td>43.7</td>
<td>203</td>
<td>43.7</td>
<td>203</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>64</td>
<td>171</td>
<td>69.4</td>
<td>171</td>
<td>69.4</td>
<td>171</td>
<td>69.5</td>
<td>64</td>
<td>165</td>
<td>72.0</td>
<td>163</td>
<td>72.7</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>64</td>
<td>34.6</td>
<td>416</td>
<td>35.0</td>
<td>412</td>
<td>35.0</td>
<td>412</td>
<td>64</td>
<td>34.9</td>
<td>413</td>
<td>35.3</td>
<td>409</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>64</td>
<td>29.4</td>
<td>595</td>
<td>29.3</td>
<td>596</td>
<td>29.3</td>
<td>595</td>
<td>64</td>
<td>29.4</td>
<td>595</td>
<td>29.3</td>
<td>596</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>64</td>
<td>45.0</td>
<td>202</td>
<td>45.8</td>
<td>199</td>
<td>45.8</td>
<td>199</td>
<td>64</td>
<td>45.0</td>
<td>202</td>
<td>45.8</td>
<td>199</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>64</td>
<td>29.1</td>
<td>542</td>
<td>28.9</td>
<td>544</td>
<td>29.5</td>
<td>534</td>
<td>64</td>
<td>29.1</td>
<td>542</td>
<td>28.9</td>
<td>544</td>
</tr>
</tbody>
</table>

RESULTS:

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at
http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit
'ulimit -l 2097152' was used to set environment locked pages in memory limit
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

To limit dirty cache to 8% of memory, 'sysctl -w vm.dirty_ratio=8' run as root.
To limit swap usage to minimum necessary, 'sysctl -w vm.swappiness=1' run as root.
To free node-local memory and avoid remote memory usage, 'sysctl -w vm.zone_reCLAIM_mode=1' run as root.
To clear filesystem caches, 'sync; sysctl -w vm.drop_caches=3' run as root.
To disable address space layout randomization (ASLR) to reduce run-to-run variability, 'sysctl -w kernel.randomize_va_space=0' run as root.
To enable Transparent Hugepages (THP) for all allocations,
Operating System Notes (Continued)

'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and
'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To always enable THP for peak runs of:
603.bwaves_s, 607.cactuBSSN_s, 619.lbm_s, 627.cam4_s, 628.pop2_s, 638.imagick_s, 644.nab_s, 649.fotonik3d_s:
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled; echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To disable THP for peak runs of 621.wrf_s:
'echo never > /sys/kernel/mm/transparent_hugepage/enabled; echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To enable THP only on request for peak runs of 654.roms_s:
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled; echo madvise > /sys/kernel/mm/transparent_hugepage/defrag' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITIY = "0-63"
LD_LIBRARY_PATH = "/home/new_cpu2017/amd_speed_aocc400_genoa_B_lib/lib:"
LIBOMP_NUM_HIDDEN_HELPER_THREADS = "0"
MALLOCONF = "oversize_threshold:0,retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "64"

Environment variables set by runcpu during the 603.bwaves_s peak run:
GOMP_CPU_AFFINITIY = "0-63"

Environment variables set by runcpu during the 607.cactuBSSN_s peak run:
GOMP_CPU_AFFINITIY = "0-63"

Environment variables set by runcpu during the 621.wrf_s peak run:
GOMP_CPU_AFFINITIY = "0-63"

Environment variables set by runcpu during the 628.pop2_s peak run:
GOMP_CPU_AFFINITIY = "0-63"

Environment variables set by runcpu during the 638.imagick_s peak run:
GOMP_CPU_AFFINITIY = "0-63"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 9174F CPU + 1.5TiB Memory using RHEL 8.6

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)

(Continued on next page)
General Notes (Continued)

is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration
- Workload Profile set to General Peak Frequency Compute
- Determinism Control set to Manual
- Performance Determinism set to Power Deterministic
- AMD SMT Option set to Disabled
- Last-Level Cache (LLC) as NUMA Node set to Enabled
- ACPI CST C2 Latency set to 18 microseconds
- Memory PStates set to Disabled
- Thermal Configuration set to Maximum Cooling

The system ROM used for this result contains microcode version 0xa10110e for the AMD EPYC 9nn4X family of processors. The reference code/AGESA version used in this ROM is version GenoaPI 1.0.0.1-L6

Sysinfo program /home/new_cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acafc64d running on admin1 Tue Jun 28 00:08:01 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
- model name : AMD EPYC 9354 32-Core Processor
  - 2 "physical id"s (chips)
  - 64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
- cpu cores : 32
- siblings : 32
- physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
- physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

From lscpu from util-linux 2.37.2:
- Architecture: x86_64
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU op-mode(s):</td>
<td>32-bit, 64-bit</td>
</tr>
<tr>
<td>Address sizes:</td>
<td>52 bits physical, 57 bits virtual</td>
</tr>
<tr>
<td>Byte Order:</td>
<td>Little Endian</td>
</tr>
<tr>
<td>CPU(s):</td>
<td>64</td>
</tr>
<tr>
<td>On-line CPU(s) list:</td>
<td>0-63</td>
</tr>
<tr>
<td>Vendor ID:</td>
<td>AuthenticAMD</td>
</tr>
<tr>
<td>Model name:</td>
<td>AMD EPYC 9354 32-Core Processor</td>
</tr>
<tr>
<td>CPU family:</td>
<td>25</td>
</tr>
<tr>
<td>Model:</td>
<td>17</td>
</tr>
<tr>
<td>Thread(s) per core:</td>
<td>1</td>
</tr>
<tr>
<td>Core(s) per socket:</td>
<td>32</td>
</tr>
<tr>
<td>Socket(s):</td>
<td>2</td>
</tr>
<tr>
<td>Stepping:</td>
<td>1</td>
</tr>
<tr>
<td>Frequency boost:</td>
<td>enabled</td>
</tr>
<tr>
<td>CPU max MHz:</td>
<td>3800.0000</td>
</tr>
<tr>
<td>CPU min MHz:</td>
<td>400.0000</td>
</tr>
<tr>
<td>BogoMIPS:</td>
<td>6490.27</td>
</tr>
<tr>
<td>Flags:</td>
<td>fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapi pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw lse skinit wdt tce topoext perfctr_core perfctr_nb bpez perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 2 ens invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha ni avx512bw avx512vl xsaveopt xsaves xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local avx512_bf16 clzero irperf xsaverpr rdpru wboinvd amd_ppn cppc arat npt lbrv svmlock nrip_save tsc_scale vmcb_clean flushbasid decodeassists pausefilter pthreshold avic v_vmsave_vmload vgif v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfn vaes vpc1mulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recover succor smca fsrm flush_l1d</td>
</tr>
<tr>
<td>Virtualization:</td>
<td>AMD-V</td>
</tr>
<tr>
<td>L1d cache:</td>
<td>2 MiB (64 instances)</td>
</tr>
<tr>
<td>L1i cache:</td>
<td>2 MiB (64 instances)</td>
</tr>
<tr>
<td>L2 cache:</td>
<td>64 MiB (64 instances)</td>
</tr>
<tr>
<td>L3 cache:</td>
<td>512 MiB (16 instances)</td>
</tr>
<tr>
<td>NUMA node(s):</td>
<td>16</td>
</tr>
<tr>
<td>NUMA node0 CPU(s):</td>
<td>0-3</td>
</tr>
<tr>
<td>NUMA node1 CPU(s):</td>
<td>16-19</td>
</tr>
<tr>
<td>NUMA node2 CPU(s):</td>
<td>8-11</td>
</tr>
<tr>
<td>NUMA node3 CPU(s):</td>
<td>24-27</td>
</tr>
<tr>
<td>NUMA node4 CPU(s):</td>
<td>12-15</td>
</tr>
<tr>
<td>NUMA node5 CPU(s):</td>
<td>28-31</td>
</tr>
<tr>
<td>NUMA node6 CPU(s):</td>
<td>4-7</td>
</tr>
<tr>
<td>NUMA node7 CPU(s):</td>
<td>20-23</td>
</tr>
<tr>
<td>NUMA node8 CPU(s):</td>
<td>32-35</td>
</tr>
</tbody>
</table>

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

NUMA node9 CPU(s):               48–51
NUMA node10 CPU(s):              40–43
NUMA node11 CPU(s):              56–59
NUMA node12 CPU(s):              44–47
NUMA node13 CPU(s):              60–63
NUMA node14 CPU(s):              36–39
NUMA node15 CPU(s):              52–55
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:               Not affected
Vulnerability Mds:                Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via
prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user
pointer sanitation
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW,
STIBP disabled, RSB filling, PBRSE-IBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

From lscpu --cache:
NAME ONE-SIZE ALL-SIZE WAYS TYPE        LEVEL  SETS PHY-LINE COHERENCY-SIZE
L1d  32K       2M    8 Data            1    64        1             64
L1i  32K       2M    8 Instruction     1    64        1             64
L2   1M       64M    8 Unified         2 2048       1             64
L3   32M      512M   16 Unified        3 32768      1             64

/proc/cpuinfo cache data
  cache size: 1024 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 16 nodes (0-15)
  node 0 cpus: 0 1 2 3
  node 0 size: 96456 MB
  node 0 free: 96310 MB
  node 1 cpus: 16 17 18 19
  node 1 size: 96766 MB
  node 1 free: 96590 MB
  node 2 cpus: 8 9 10 11
  node 2 size: 96766 MB
  node 2 free: 96587 MB
  node 3 cpus: 24 25 26 27
  node 3 size: 96766 MB
  node 3 free: 96650 MB

(Continued on next page)
Hewlett Packard Enterprise  
(Test Sponsor: HPE)  
ProLiant DL365 Gen11  
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_fp_base = 319  
SPECspeed®2017_fp_peak = 324

Platform Notes (Continued)

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>8:</td>
<td>32</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Copyright 2017-2023 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)


From /proc/meminfo
MemTotal: 1585025516 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/sbin/tuned-adm active
Current active profile: balanced

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

/usr/bin/lsb_release -d
Ubuntu 22.04.1 LTS

From /etc/*release* /etc/*version*
debian_version: bookworm/sid
os-release:
  PRETTY_NAME="Ubuntu 22.04.1 LTS"
  NAME="Ubuntu"
  VERSION_ID="22.04"
  VERSION="22.04.1 LTS (Jammy Jellyfish)"
  VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"

uname -a:
Linux admin1 5.15.0-50-generic #56-Ubuntu SMP Tue Sep 20 13:23:26 UTC 2022 x86_64
x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
mmio_stale_data: Not affected
retbleed: Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store

(Continued on next page)
## Platform Notes (Continued)

Bypass disabled via prctl and seccomp

Mitigation: usercopy/swapsgs barriers and __user pointer sanitization

Mitigation: Retpolines, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling, PBRSB-eIBRS: Not affected

Not affected

Not affected

---

### Compiler Version Notes

```
C       619.lbm_s(base, peak) 638.imagick_s(base, peak)
        644.nab_s(base, peak)
```

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

 SPECspeed®2017_fp_base = 319
 SPECspeed®2017_fp_peak = 324

Compiler Version Notes (Continued)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==============================================================================
C++, C, Fortran | 607.cactuBSSN_s(base, peak)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==============================================================================
Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
| 654.roms_s(base, peak)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==============================================================================
Fortran, C | 621.wrf_s(base, peak) 627.cam4_s(base, peak)
| 628.pop2_s(base, peak)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on
 LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Compiler Version Notes (Continued)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

603.bwaves.s: -DSPEC_LP64
607.cactuBSSN.s: -DSPEC_LP64
619.lbm.s: -DSPEC_LP64
621.wrf.s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4.s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2.s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick.s: -DSPEC_LP64
644.nab.s: -DSPEC_LP64
649.fotonik3d.s: -DSPEC_LP64
654.roms.s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -W1, -mlllvm -W1, -align-all-nofallthru-blocks=6
-W1, -mlllvm -W1, -reduce-array-computations=3 -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
-mlllvm -unroll-threshold=50 -mlllvm -inline-threshold=1000

(Continued on next page)
Base Optimization Flags (Continued)

C benchmarks (continued):
- -fremap-arrays -fstrip-mining -mlllvm -reduce-array-computations=3
- -DSPEC_OPENMP -zopt -fopenmp=libomp -lomp -lamdlibm -lamdalloc
- -lflang

Fortran benchmarks:
- -m64 -W1,-mlllvm -W1,-align-all-nofallthru-blocks=6
- -W1,-mlllvm -W1,-reduce-array-computations=3
- -W1,-mlllvm -W1,-enable-X86-prefetching -DSPEC_OPENMP -O3 -march=znver4
- -fveclib=AMDLIBM -ffast-math -fopenmp -flto -Mrecursive
- -funroll-loops -mlllvm -lsr-in-nested-loop
- -mlllvm -reduce-array-computations=3 -zopt -fopenmp=libomp -lomp
- -lamdlibm -lamdalloc -lflang

Benchmarks using both Fortran and C:
- -m64 -W1,-mlllvm -W1,-align-all-nofallthru-blocks=6
- -W1,-mlllvm -W1,-reduce-array-computations=3
- -W1,-mlllvm -W1,-enable-X86-prefetching -O3 -march=znver4
- -fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
- -mlllvm -unroll-threshold=50 -mlllvm -inline-threshold=1000
- -fremap-arrays -fstrip-mining -mlllvm -reduce-array-computations=3
- -DSPEC_OPENMP -zopt -Mrecursive -funroll-loops
- -mlllvm -lsr-in-nested-loop -fopenmp=libomp -lomp -lamdlibm -lamdalloc
- -lflang

Benchmarks using Fortran, C, and C++:
- -m64 -W1,-mlllvm -W1,-align-all-nofallthru-blocks=6
- -W1,-mlllvm -W1,-reduce-array-computations=3
- -W1,-mlllvm -W1,-x86-use-vzeroupper=false -O3 -march=znver4
- -fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
- -mlllvm -unroll-threshold=50 -mlllvm -inline-threshold=1000
- -fremap-arrays -fstrip-mining -mlllvm -reduce-array-computations=3
- -DSPEC_OPENMP -zopt -mlllvm -unroll-threshold=100 -finline-aggressive
- -mlllvm -loop-unswitch-threshold=200000 -Mrecursive -funroll-loops
- -mlllvm -lsr-in-nested-loop -fopenmp=libomp -lomp -lamdlibm -lamdalloc
- -lflang

Base Other Flags

C benchmarks:
- -Wno-return-type -Wno-unused-command-line-argument

Fortran benchmarks:
- -Wno-unused-command-line-argument

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_fp_base = 319
SPECspeed®2017_fp_peak = 324

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Jan-2023
Tested by: HPE
Hardware Availability: Dec-2022
Software Availability: Nov-2022

### Base Other Flags (Continued)

Benchmarks using both Fortran and C:
-Wno-return-type -Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
-Wno-return-type -Wno-unused-command-line-argument

### Peak Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

### Peak Portability Flags

Same as Base Portability Flags

### Peak Optimization Flags

C benchmarks:
619.lbm_s: basepeak = yes

638.imagick_s: -m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math -fopenmp
-flto -fstruct-layout=9 -mllvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
-fopenmp=libomp -lomp -lamdlibm -lamdalloc -lflang

(Continued on next page)
Peak Optimization Flags (Continued)

644.nab_s: basepeak = yes

Fortran benchmarks:

603.bwaves_s: -m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -DSPEC_OPENMP
-Ofast -march=znver4 -fveclib=AMDLIBM -ffast-math
-fopenmp -Mrecursive -mllvm -reduce-array-computations=3
-fvector-transform -fscalar-transform -fopenmp=libomp
-lomp -lamdlibm -lamdalloc -lflang

649.fotonik3d_s: basepeak = yes

654.roms_s: basepeak = yes

Benchmarks using both Fortran and C:

621.wrf_s: -m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math -fopenmp
-flto -fstruct-layout=9 -mllvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
-o3 -Mrecursive -funroll-loops -mllvm -lslr-in-nested-loop
-fopenmp=libomp -lomp -lamdlibm -lamdalloc -lflang

627.cam4_s: basepeak = yes

628.pop2_s: -m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math -fopenmp
-flto -fstruct-layout=9 -mllvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
-Mrecursive -fvector-transform -fscalar-transform
-fopenmp=libomp -lomp -lamdlibm -lamdalloc -lflang

Benchmarks using Fortran, C, and C++:

-m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

Specspeed®2017_fp_base = 319
Specspeed®2017_fp_peak = 324

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Peak Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++ (continued):
-Wl,-mlllvm -Wl,-reduce-array-computations=3
-Wl,-mlllvm -Wl,-x86-use-vzeroupper=false -Ofast -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=9
-mlllvm -unroll-threshold=50 -fremap-arrays -fstrip-mining
-mlllvm -inline-threshold=1000 -mlllvm -reduce-array-computations=3
-DSPEC_OPENMP -zopt -finline-aggressive -mlllvm -unroll-threshold=100
-Mrecursive -fopenmp=libomp -lomp -lamdlibm -lamdalloc -lflang

Peak Other Flags

C benchmarks:
-Wno-return-type -Wno-unused-command-line-argument

Fortran benchmarks:
-Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
-Wno-return-type -Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
-Wno-return-type -Wno-unused-command-line-argument

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.html
http://www.spec.org/cpu2017/flags/aocc400-flags.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.xml
http://www.spec.org/cpu2017/flags/aocc400-flags.xml

SPEC CPU®2017 Floating Point Speed Result
Copyright 2017-2023 Standard Performance Evaluation Corporation

SPEC CPU and Specspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-06-27 14:38:00-0400.
Report generated on 2023-02-01 18:20:47 by CPU2017 PDF formatter v6442.
Originally published on 2023-02-01.