SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise

(Industrial Sponsor: HPE)

ProLiant DL325 Gen11

(2.70 GHz, AMD EPYC 9334)

<table>
<thead>
<tr>
<th>Test Date:</th>
<th>Dec-2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Availability:</td>
<td>Dec-2022</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Nov-2022</td>
</tr>
</tbody>
</table>

CPU2017 License:	3
Test Sponsor:	HPE
Tested by:	HPE

Hardware

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Name:</td>
<td>AMD EPYC 9334</td>
</tr>
<tr>
<td>Max MHz:</td>
<td>3900</td>
</tr>
<tr>
<td>Nominal:</td>
<td>2700</td>
</tr>
<tr>
<td>Enabled:</td>
<td>32 cores, 1 chip, 2 threads/core</td>
</tr>
<tr>
<td>Orderable:</td>
<td>1 chip</td>
</tr>
<tr>
<td>Cache L1:</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>L2:</td>
<td>1 MB I+D on chip per core</td>
</tr>
<tr>
<td>L3:</td>
<td>128 MB I+D on chip per chip, 32 MB shared / 8 cores</td>
</tr>
<tr>
<td>Memory:</td>
<td>768 GB (12 x 64 GB 2Rx4 PC5-4800B-R)</td>
</tr>
<tr>
<td>Storage:</td>
<td>1 x 480 GB SATA SSD</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS:</td>
<td>Red Hat Enterprise Linux 9.0 (Plow)</td>
</tr>
<tr>
<td>Compiler:</td>
<td>C/C++/Fortran: Version 4.0.0 of AOCC</td>
</tr>
<tr>
<td>Parallel:</td>
<td>No</td>
</tr>
<tr>
<td>Firmware:</td>
<td>HPE BIOS Version v1.12 11/24/2022 released</td>
</tr>
<tr>
<td>File System:</td>
<td>xfs</td>
</tr>
<tr>
<td>System State:</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers:</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers:</td>
<td>64-bit</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
<tr>
<td>Power Management:</td>
<td>BIOS and OS set to prefer performance at the cost of additional power usage</td>
</tr>
</tbody>
</table>

Graph

![Graph showing SPECrate®2017 fp_base and fp_peak results for various benchmarks](image-url)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>64</td>
<td>839</td>
<td>765</td>
<td>840</td>
<td>764</td>
<td>839</td>
<td>765</td>
<td>840</td>
<td>764</td>
<td>839</td>
<td>765</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>64</td>
<td>151</td>
<td>535</td>
<td>152</td>
<td>533</td>
<td>150</td>
<td>538</td>
<td>151</td>
<td>536</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>64</td>
<td>227</td>
<td>268</td>
<td>227</td>
<td>268</td>
<td>227</td>
<td>268</td>
<td>227</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>64</td>
<td>636</td>
<td>263</td>
<td>636</td>
<td>263</td>
<td>636</td>
<td>263</td>
<td>636</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>64</td>
<td>389</td>
<td>384</td>
<td>388</td>
<td>385</td>
<td>389</td>
<td>384</td>
<td>388</td>
<td>385</td>
<td>389</td>
<td>384</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>64</td>
<td>247</td>
<td>273</td>
<td>247</td>
<td>274</td>
<td>246</td>
<td>274</td>
<td>245</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>64</td>
<td>356</td>
<td>402</td>
<td>354</td>
<td>405</td>
<td>361</td>
<td>397</td>
<td>340</td>
<td>421</td>
<td>314</td>
<td>355</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>64</td>
<td>272</td>
<td>359</td>
<td>274</td>
<td>356</td>
<td>273</td>
<td>357</td>
<td>272</td>
<td>356</td>
<td>273</td>
<td>357</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>64</td>
<td>314</td>
<td>356</td>
<td>317</td>
<td>353</td>
<td>315</td>
<td>355</td>
<td>314</td>
<td>356</td>
<td>315</td>
<td>355</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>64</td>
<td>115</td>
<td>1390</td>
<td>115</td>
<td>1390</td>
<td>115</td>
<td>1390</td>
<td>114</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>64</td>
<td>184</td>
<td>586</td>
<td>185</td>
<td>582</td>
<td>185</td>
<td>582</td>
<td>185</td>
<td>582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>64</td>
<td>930</td>
<td>268</td>
<td>929</td>
<td>268</td>
<td>929</td>
<td>268</td>
<td>926</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>64</td>
<td>515</td>
<td>197</td>
<td>515</td>
<td>198</td>
<td>512</td>
<td>199</td>
<td>515</td>
<td>198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

To limit dirty cache to 8% of memory, 'sysctl -w vm.dirty_ratio=8' run as root.
To limit swap usage to minimum necessary, 'sysctl -w vm.swappiness=1' run as root.
To free node-local memory and avoid remote memory usage, 'sysctl -w vm.zone_reclaim_mode=1' run as root.

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECratenumpfp_base = 400
SPECratenumpfp_peak = 402

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Operating System Notes (Continued)

To clear filesystem caches, 'sync; sysctl -w vm.drop_caches=3' run as root.
To disable address space layout randomization (ASLR) to reduce run-to-run variability, 'sysctl -w kernel.randomize_va_space=0' run as root.

To enable Transparent Hugepages (THP) for all allocations, 'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and 'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
 "'/home/cpu2017/amd_rate_aocc400_genoa_B_lib/lib:/home/cpu2017/amd_rate_aocc400_genoa_B_lib/lib32:""
MALLOC_CONF = "retain:true"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 9174F CPU + 1.5TiB Memory using RHEL 8.6
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration
Workload Profile set to General Throughput Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Last-Level Cache (LLC) as NUMA Node set to Enabled
NUMA memory domains per socket set to Four memory domains per socket
ACPI CST C2 Latency set to 18 microseconds
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
Power Regulator set to OS Control Mode

The system ROM used for this result contains microcode version 0xa10110e for the AMD EPYC 9nn4X family of processors. The reference code/AGESA version used in this
Platform Notes (Continued)

ROM is version GenoaPI 1.0.0.1-L6

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acaf64d
running on localhost.localdomain Thu Apr 7 05:34:05 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

model name: AMD EPYC 9334 32-Core Processor
 1 "physical id"s (chips)
64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores: 32
siblings: 64
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31

From lscpu from util-linux 2.37.4:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: AuthenticAMD
BIOS Vendor ID: Advanced Micro Devices, Inc.
Model name: AMD EPYC 9334 32-Core Processor
BIOS Model name: AMD EPYC 9334 32-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3910.2529
CPU min MHz: 1500.0000
BogoMIPS: 5391.86
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
 pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr opt
 pdelpg rbtsc lp mmstat cmov pse36 cmpxchg32a
 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

| SPECrate®2017_fp_base | 400 |
| SPECrate®2017_fp_peak | 402 |

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

misalignsse 3dnowprefetch osvw ibs skinit wdt tc topoext perfctr_core perfctr_nb
bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs
ibpb stibp vmcall fsqbase bmi1 avx2 smp bmi2 erms invpcid cq m rdt_a avx512f
avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha ni avx512bw
avx512vl xsaveopt xsaves xgetbv1 xsavec avx512c q m llc cq m_occip llc cq m_mbb_total
cq m_mbb_local avx512_bf16 clzero irperf xsaverepr tdpru wbnoinvd amd ppin arat npt
lbv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter
pthreshold avic v_vmsave_vmlode vg if v spec_ctr l avx512vbm umip pku ospe
avx512_vbmi2 gfn i vaes vpcmulqdq avx512_vnni avx512_bitalg avx512_vpocndtdq la57
rdpid overflow_recov succor smca fsrm flush_lld
Virtualization: AMD-V
L1d cache: 1 MiB (32 instances)
L1i cache: 1 MiB (32 instances)
L2 cache: 32 MiB (32 instances)
L3 cache: 128 MiB (4 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-7,32-39
NUMA node1 CPU(s): 16-23,48-55
NUMA node2 CPU(s): 24-31,56-63
NUMA node3 CPU(s): 8-15,40-47
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via
prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user
pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW,
STIBP always-on, RSB filling
Vulnerability Srbd: Not affected
Vulnerability Tsx async abort: Not affected

From lscpu --cache:
NAME ONE-SIZE ALL-SIZE WAYS TYPE LEVEL SETS PHY-LINE COHERENCY-SIZE
L1d 32K 1M 8 Data 1 64 1 64
L1i 32K 1M 8 Instruction 1 64 1 64
L2 1M 32M 8 Unified 2 2048 1 64
L3 32M 128M 16 Unified 3 32768 1 64

/proc/cpuinfo cache data
cache size: 1024 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 32 33 34 35 36 37 38 39

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECraten®2017_fp_base = 400
SPECraten®2017_fp_peak = 402

Platform Notes (Continued)

node 0 size: 193249 MB
node 0 free: 192523 MB
node 1 cpus: 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
node 1 size: 193532 MB
node 1 free: 192766 MB
node 2 cpus: 24 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63
node 2 size: 193532 MB
node 2 free: 192774 MB
node 3 cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
node 3 size: 193486 MB
node 3 free: 192566 MB
node distances:
node 0 1 2 3
0: 10 12 12 12
1: 12 10 12 12
2: 12 12 10 12
3: 12 12 12 10

From /proc/meminfo
MemTotal: 792371796 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sbin/tuned-adm active
Current active profile: throughput-performance
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

From /etc/*release* /etc/*version *

os-release:
NAME="Red Hat Enterprise Linux"
VERSION="9.0 (Plow)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="9.0"
PLATFORM_ID="platform:el9"
PRETTY_NAME="Red Hat Enterprise Linux 9.0 (Plow)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 9.0 (Plow)
system-release: Red Hat Enterprise Linux release 9.0
system-release-cpe: cpe:/o:redhat:enterprise_linux:9::baseos

uname -a:
Linux localhost.localdomain 5.14.0-70.13.1.el9_0.x86_64 #1 SMP PREEMPT Thu Apr 14 12:42:38 EDT 2022 x86_64 x86_64 x86_64 GNU/Linux

(Continued on next page)
Platform Notes (Continued)

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swapsgs barriers and __user pointer sanitation
CVE-2017-5715 (Spectre variant 2): Mitigation: Retpolines, IBPB: conditional, IBRS_FW, STIBP: always-on, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Apr 7 05:30

SPEC is set to: /home/cpu2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/mapper/rhel-home xfs 372G 17G 355G 5% /home

From /sys/devices/virtual/dmi/id
 Vendor: HPE
 Product: ProLiant DL325 Gen11
 Product Family: ProLiant
 Serial: DL325GEN11-002

Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 Memory:
 12x Hynix HMCG94MEBRA121N 64 GB 2 rank 4800

BIOS:
 BIOS Vendor: HPE
 BIOS Version: 1.12
 BIOS Date: 11/24/2022
 BIOS Revision: 1.12
 Firmware Revision: 1.10

(End of data from sysinfo program)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECrater®2017_fp_base = 400
SPECrater®2017_fp_peak = 402

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Compiler Version Notes

==
| 519.lbm_r(base, peak) 538.imagick_r(base, peak) 544.nab_r(base, peak) |
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
==

==
| 508.namd_r(base, peak) 510.parest_r(base, peak) |
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
==

==
| 511.povray_r(base, peak) 526.blender_r(base, peak) |
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
==

==
| 507.cactuBSSN_r(base, peak) |
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
==

==
| 507.cactuBSSN_r(base, peak) |
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
==

(Continued on next page)
Hewlett Packard Enterprise
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECrate®2017_fp_base = 400
SPECrate®2017_fp_peak = 402

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Compiler Version Notes (Continued)

Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==
Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak) 554.roms_r(base, peak)
==
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==
Fortran, C | 521.wrf_r(base, peak) 527.cam4_r(base, peak)
==
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

Base Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_fp_peak</td>
<td>402</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Base Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
flang clang

Benchmarks using both C and C++:
clang++ clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
526.blender_r: -funsigned-char -DSPEC_LP64
527.cam4_r: -DSPEC_CASE_FLAG -DSPEC_LP64
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-ldist-scalar-expand -fenable-aggressive-gather -O3
-march=znver4 -fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
-zopt -lamlldlibm -lamlradalloc -lflang

C++ benchmarks:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-x86-use-vzeroupper=false -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -mllvm -unroll-threshold=100
-finline-aggressive -mllvm -loop-unswitch-threshold=200000

(Continued on next page)
Base Optimization Flags (Continued)

C++ benchmarks (continued):
-ml illum -reduce-array-computations=3 -zopt -lamdlibm -lamdalloc
-lflang

Fortran benchmarks:
- m64 -flto -W1,-ml illum -W1,-align-all-nofallthrublocks=6
- W1,-ml illum -W1,-reduce-array-computations=3
- W1,-ml illum -W1,-enable-X86-prefetching -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -Kieee -Mrecursive -funroll-loops
- ml illum -lsr-in-nested-loop -ml illum -reduce-array-computations=3
- fepilog-vectorization-of-inductions -zopt -lamdlibm -lamdalloc
-lflang

Benchmarks using both Fortran and C:
- m64 -flto -W1,-ml illum -W1,-align-all-nofallthrublocks=6
- W1,-ml illum -W1,-reduce-array-computations=3
- W1,-ml illum -W1,-enable-X86-prefetching -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -fstruct-layout=7
- ml illum -unroll-threshold=50 -ml illum -inline-threshold=1000
- fremap-arrays -fsstrip-mining -ml illum -reduce-array-computations=3
- zopt -Kieee -Mrecursive -funroll-loops -ml illum -lsr-in-nested-loop
- fepilog-vectorization-of-inductions -lamdlibm -lamdalloc -lflang

Benchmarks using both C and C++:
- m64 -flto -W1,-ml illum -W1,-align-all-nofallthrublocks=6
- W1,-ml illum -W1,-reduce-array-computations=3
- W1,-ml illum -W1,-x86-use-vzeroupper=false -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -fstruct-layout=7
- ml illum -unroll-threshold=50 -ml illum -inline-threshold=1000
- fremap-arrays -fstrip-mining -ml illum -reduce-array-computations=3
- zopt -ml illum -unroll-threshold=100 -finline-aggressive
- ml illum -loop-unsswitch-threshold=200000 -lamdlibm -lamdalloc -lflang

Benchmarks using Fortran, C, and C++:
- m64 -flto -W1,-ml illum -W1,-align-all-nofallthrublocks=6
- W1,-ml illum -W1,-reduce-array-computations=3
- W1,-ml illum -W1,-x86-use-vzeroupper=false -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -fstruct-layout=7
- ml illum -unroll-threshold=50 -ml illum -inline-threshold=1000
- fremap-arrays -fstrip-mining -ml illum -reduce-array-computations=3
- zopt -ml illum -unroll-threshold=100 -finline-aggressive
- ml illum -loop-unsswitch-threshold=200000 -Kieee -Mrecursive
- funroll-loops -ml illum -lsr-in-nested-loop
- fepilog-vectorization-of-inductions -lamdlibm -lamdalloc -lflang
Hewlett Packard Enterprise
(2.70 GHz, AMD EPYC 9334)

SPECrate®2017_fp_base = 400
SPECrate®2017_fp_peak = 402

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Base Other Flags

C benchmarks:
-Wno-unused-command-line-argument

C++ benchmarks:
-Wno-unused-command-line-argument

Fortran benchmarks:
-Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
-Wno-unused-command-line-argument

Benchmarks using both C and C++:
-Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
-Wno-unused-command-line-argument

Peak Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using both C and C++:
clang++ clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECrate®2017_fp_base = 400
SPECrate®2017_fp_peak = 402

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Peak Optimization Flags

C benchmarks:

519.lbm_r: -m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math
-fstruct-layout=7 -mllvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -zopt -lamdlibm
-lamdaloc

538.imagick_r: Same as 519.lbm_r

544.nab_r: -m64 -flto -Wl,-mllvm -Wl,-ldist-scalar-expand
-fenable-aggressive-gather -Ofast -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -unroll-threshold=50 -fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -zopt -lamdlibm
-lamdaloc

C++ benchmarks:

508.namd_r: basepeak = yes

510.parest_r: -m64 -flto -Wl,-mllvm -Wl,-suppress-fmas
-Wl,-mllvm -Wl,-x86-use-vzeroupper=false -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math
-finline-aggressive -mllvm -unroll-threshold=100
-mllvm -reduce-array-computations=3 -zopt -lamdlibm
-lamdaloc

Fortran benchmarks:

503.bwaves_r: basepeak = yes

549.fotonik3d_r: -m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math -Kieee
-Mrecursive -mllvm -reduce-array-computations=3
-fepilog-vectorization-of-inductions -fvector-transform
-fscalar-transform -lamdlibm -lamdaloc -lflang

554.roms_r: basepeak = yes

(Continued on next page)
Peak Optimization Flags (Continued)

Benchmarks using both Fortran and C:

521.wrf_r: -m64 -fllto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Ofast -march=znver4 -fveclib=AMDLIBM -ffast-math
-fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000
-mllvm -reduce-array-computations=3 -zopt -Mrecursive
-fepilog-vectorization-of-inductions -lamdlibm -lamdaloc
-1flang

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: basepeak = yes

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

-m64 -fllto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Ofast -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -unroll-threshold=50 -fremap-arrays -fstrip-mining
-mllvm -inline-threshold=1000 -mllvm -reduce-array-computations=3 -zopt
-mllvm -unroll-threshold=100 -mllvm -loop-unswitch-threshold=200000
-finline-aggressive -faggressive-loop-reversal -fvector-vectorization
-fscalar-transform -Mrecursive -fepilog-vectorization-of-inductions
-lamdlibm -lamdaloc -1flang

Peak Other Flags

C benchmarks:
-Wno-unused-command-line-argument

C++ benchmarks:
-Wno-unused-command-line-argument

Fortran benchmarks:
-Wno-unused-command-line-argument

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECrate®2017_fp_base = 400
SPECrate®2017_fp_peak = 402

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Peak Other Flags (Continued)

Benchmarks using both Fortran and C:
-Wno-unused-command-line-argument

Benchmarks using both C and C++:
-Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
-Wno-unused-command-line-argument

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.html
http://www.spec.org/cpu2017/flags/aocc400-flags.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.xml
http://www.spec.org/cpu2017/flags/aocc400-flags.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-04-06 20:04:04-0400.
Report generated on 2023-02-15 10:34:03 by CPU2017 PDF formatter v6442.
Originally published on 2023-02-14.