SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Hardware

<table>
<thead>
<tr>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
</tr>
<tr>
<td>508.namd_r</td>
</tr>
<tr>
<td>510.parest_r</td>
</tr>
<tr>
<td>511.povray_r</td>
</tr>
<tr>
<td>519.lbm_r</td>
</tr>
<tr>
<td>521.wrf_r</td>
</tr>
<tr>
<td>526.blender_r</td>
</tr>
<tr>
<td>527.cam4_r</td>
</tr>
<tr>
<td>538.imagick_r</td>
</tr>
<tr>
<td>540.nab_r</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
</tr>
<tr>
<td>554.roms_r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU Name:</th>
<th>AMD EPYC 9474F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max MHz:</td>
<td>4100</td>
</tr>
<tr>
<td>Nominal:</td>
<td>3600</td>
</tr>
<tr>
<td>Enabled:</td>
<td>48 cores, 1 chip, 2 threads/core</td>
</tr>
<tr>
<td>Orderable:</td>
<td>1 chip</td>
</tr>
<tr>
<td>Cache L1:</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>L2:</td>
<td>1 MB I+D on chip per core</td>
</tr>
<tr>
<td>L3:</td>
<td>256 MB I+D on chip per core, 32 MB shared / 6 cores</td>
</tr>
</tbody>
</table>

(Continued on next page)

<table>
<thead>
<tr>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS:</td>
</tr>
<tr>
<td>Compiler:</td>
</tr>
<tr>
<td>Parallel:</td>
</tr>
<tr>
<td>Firmware:</td>
</tr>
<tr>
<td>File System:</td>
</tr>
<tr>
<td>System State:</td>
</tr>
<tr>
<td>Base Pointers:</td>
</tr>
</tbody>
</table>

(Continued on next page)
SPE has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Orders</th>
<th>Iter</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>NC</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>NC</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>NC</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>NC</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>NC</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>NC</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>NC</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>NC</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>NC</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>NC</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>NC</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>NC</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>NC</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

To limit dirty cache to 8% of memory, 'sysctl -w vm.dirty_ratio=8' run as root.
To limit swap usage to minimum necessary, 'sysctl -w vm.swappiness=1' run as root.
To free node-local memory and avoid memory usage,
'sysctl -w vm.zone_reclaim_mode=1' run as root.
To clear filesystem caches, 'sync; sysctl -w vm.dirty_caches=0' run as root.
To disable address space layout randomization (ASLR) to reduce run-to-run variability, 'sysctl -w kernel.randomize_va_space=0' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
"/home/cpu2017/amd_rate_aocc400_genoa_B_lib:/home/cpu2017/amd_rate_aocc400_genoa_B_lib/lib32:"
MALLOCONF = "true, true"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 9174F CPU + 1.5TiB Memory using RHEL 8.6

The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: the test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration
Workload Profile set to General Throughput Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Last-Level Cache (LLC) as NUMA Node set to Enabled
NUMA memory domains per socket to Four memory domains per socket

(Continued on next page)
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Platform Notes (Continued)

```bash
VERSION="9.0 (Plow)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="9.0"
PLATFORM_ID="platform:el9"
PRETTY_NAME="Red Hat Enterprise Linux 9.0 (Plow)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 9.0 (Plow)
system-release: Red Hat Enterprise Linux release 9.0 (Plow)
system-release-cpe: cpe:/o:redhat:enterprise_linux:9::baseos
uname -a:
Linux localhost.localdomain 5.14.0-70.13.1.el9_0.x86_64 #1 SMP PREEMPT Thu Apr 14
12:42:38 EDT 2022 x86_64 x86_64 x86_64 GNU/Linux
Kernel self-reported vulnerability status:
CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swaps barriers and __user pointer sanitation
CVE-2017-5715 (Spectre variant 2): Mitigation: Retpolines, IBPB: conditional, IBRS_FW, STIBF: always-on, RSB filling
CVE-2019-1135 (TSX Asynchronous Abort): Not affected
```

Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

```
Vendor:         HPE
Product:        ProLiant DL325 Gen11
Product Family: ProLiant
Serial:         DL325GEN11-002
```

Page 7 Standard Performance Evaluation Corporation (info@spec.org) https://www.spec.org/
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(3.60 GHz, AMD EPYC 9474F)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022
Test Sponsor: HPE
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

| BIOS:
| BIOS Vendor: | HPE
| BIOS Version: | 1.12
| BIOS Date: | 11/24/2022
| BIOS Revision: | 1.12
| Firmware Revision: | 1.10

(End of data from sysinfo program)

Compiler Version Notes

| C | 519.lbm_r(base, peak) 538.imagick_r(base, peak) 544.nab_r(base, peak) |
|---|
| AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin |

| C++ | 508.namd_r(base, peak) 510.parest_r(base, peak) |
|---|
| AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin |

| C++, C | 511.povray_r(base, peak) 526.blender_r(base, peak) |
|---|
| AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin |

| C++, C, Fortran | 507.cactuBSSN_r(base, peak) |
|---|
| AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin |
SPEC has determined that this result does not comply with the SPEC CPU 2017 rules and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Base Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Base Compiler Invocation (Continued)

Benchmarks using both C and C++:
clang++ clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
526.blender_r: -funswitch -D-chat -DSPEC_LP64
527.cam4_r: -DSPEC_CASE_FLAG -DSPEC_LP64
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -flto -Wl, -mlllvm -Wl, -align-all-nofallthru-blocks=6
-Wl, -mlllvm -Wl, -reduce-array-computations=3
-Wl, -mlllvm -Wl, -ldist-scalar-expand -fenable-aggressive-gather -O3
-march=znver4 -fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mlllvm -unroll-threshold=50 -mlllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mlllvm -reduce-array-computations=3
-zopt -lamlalloc -lflang

C++ benchmarks:
-m64 -flto -Wl, -mlllvm -Wl, -align-all-nofallthru-blocks=6

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(3.60 GHz, AMD EPYC 9474F)

SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Base Optimization Flags (Continued)

C++ benchmarks (continued):
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-x86-use-vzeroupper=false -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -mllvm -unroll-threshold=100
-finline-aggressive -mllvm -loop-unschedule=threshold=200000
-mllvm -reduce-array-computations=3 -zopt -lamdlibm -lamdalloc
-llflang

Fortran benchmarks:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -lsr-in-nested-loop -mllvm -reduce-array-computations=3
-fepilog-vectorization-of-inductions -zopt -lamdlibm -lamdalloc
-llflang

Benchmarks using both Fortran and C:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
-zopt -Kieee -Mrecursive -funroll-loops -mllvm -lsr-in-nested-loop
-vectorization-of-inductions -lamdlibm -lamdalloc -llflang

Benchmarks using both C and C++:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-x86-use-vzeroupper=false -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
-zopt -mllvm -unroll-threshold=100 -finline-aggressive
-mllvm -loop-unschedule=threshold=200000 -lamdlibm -lamdalloc -llflang

Benchmarks using Fortran, C, and C++:
-m64 -flto -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6

Non-Compliant

SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Base Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++ (continued):
- -Wl,-mllvm -Wl,-reduce-array-computations=3
- -Wl,-mllvm -Wl,-x86-use-vzeroupper=false -O3 -march=znver4
- -fvecclib=AMDLIBM -ffast-math -fstruct-layout-out=1
- -mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
- -freemap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
- -zo -mllvm -unroll-threshold=100 - -inline-aggressive
- -mllvm -loop-unswitch-threshold=200000 - -Mrecursive
- -funroll-loops -mllvm -lstl-in-nested-loop
- -fepilog-vectorization-of-inductions -lamlclibm -lamlalloc -lflang

Base Other Flags

C benchmarks:
- -Wno-unused-command-line-argument

C++ benchmarks:
- -Wno-unused-command-line-argument

Fortran benchmarks:
- -Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
- -Wno-unused-command-line-argument

Benchmarks using both C and C++:
- -Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
- -Wno-unused-command-line-argument

Peak Compiler Invocation

C benchmarks:
clang

(Continued on next page)
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Peak Compiler Invocation (Continued)

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using both C and C++:
clang++ clang

Benchmarks using Fortran, C, and C+:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r -basepeak = yes

538.imagick_r -m64 -flto -Wl,-mlllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math
-fstruct-layout=7 -mlllvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mlllvm -inline-threshold=1000
-mlllvm -reduce-array-computations=3 -zopt -lamdlibm
-lamdaalloc

(Continued on next page)
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Peak Optimization Flags (Continued)

- For C++ benchmarks:

 508.namd_r: basepeak = yes

 549.fotonik3d_r: basepeak = yes

- For Fortran benchmarks:

 549.fotonik3d_r: basepeak = yes

 554.roms_r: basepeak = yes

- Benchmarks using both Fortran and C:

 521.wrf_r: basepeak = yes
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Peak Optimization Flags (Continued)

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: basepeak = yes

526.blender_r: -m64 -flto -Wl,-mlvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlvm -Wl,-reduce-array-computations
-Wl,-mlvm -Wl,-x86-use-vzeroupper=false -Ofast
-march=znver4 -fveclib=AMDLIBM -ffast-math
-fstruct-layout=7 -mlvm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-mlvm -inline-threshold=1000
-mlvm -reduce-array-computations=3 -zopt
-finline-aggressive -mlvm -unroll-threshold=100 -lamdllibm
-lamdalloc

Benchmarks using Fortran, C, and C++:

- -m64 -flto -Wl,-mlvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlvm -Wl,-reduce-array-computations=3
-Wl,-mlvm -Wl,-x86-use-vzeroupper=false -Ofast -march=znver4
-fveclib=AMDLIBM -ffast-math -fstruct-layout=7
-mlvm -unroll-threshold=50 -fremap-arrays -fstrip-mining
-mlvm -inline-threshold=1000 -mlvm -reduce-array-computations=3 -zopt
-mlvm -unroll-threshold=100 -mlvm -loop-unswitch-threshold=200000
-scalloc -faggressive-loop-transform -fvector-transform
-fscalar-transform -Mrecursive -fepilog-vectorization-of-inductions
-lamdllibm -lmdalloc -llang

Peak Other Flags

C benchmarks:
-Wno-unused-command-line-argument

C++ benchmarks:
-Wno-unused-command-line-argument

(Continued on next page)
SPEC has determined that this result does not comply with the SPEC CPU 2017 run and reporting rules. Specifically, the test sponsor notified SPEC that the results were measured on an unsupported configuration.

Peak Other Flags (Continued)

Fortran benchmarks:
-Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
-Wno-unused-command-line-argument

Benchmarks using both C and C++:
-Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
-Wno-unused-command-line-argument

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.html
http://www.spec.org/cpu2017/flags/aocc400-flags.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.xml
http://www.spec.org/cpu2017/flags/aocc400-flags.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-04-06 20:06:56-0400.
Report generated on 2023-09-12 17:56:22 by CPU2017 PDF formatter v6716.
Originally published on 2023-02-14.