 SPEC CPU®2017 Floating Point Speed Result

Copyright 2017-2023 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Dec-2022
HPE

Tested by: HPE
Hardware Availability: Dec-2022

Software Availability: Nov-2022

Threads

603.bwaves_s	32
607.cactuBSSN_s	32
619.lbm_s	32
621.wrf_s	32
627.cam4_s	32
628.pop2_s	32
638.imagick_s	32
644.nab_s	32
649.fotonik3d_s	32
654.roms_s	32

SPECspeed®2017_fp_base (229) --- SPECspeed®2017_fp_peak (232)

Hardware

CPU Name: AMD EPYC 9334
Max MHz: 3900
Nominal: 2700
Enabled: 32 cores, 1 chip
Orderable: 1 chip
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 128 MB I+D on chip per chip,
32 MB shared / 8 cores
Other: None
Memory: 768 GB (12 x 64 GB 2Rx4 PC5-4800B-R)
Storage: 1 x 480 GB SATA SSD
Other: None

Software

OS: Red Hat Enterprise Linux 9.0 (Plow)
Kernel 5.14.0-70.13.1.el9_0.x86_64
Compiler: C/C++/Fortran: Version 4.0.0 of AOCC
Parallel: Yes
Firmware: HPE BIOS Version v1.12 11/24/2022 released
Nov-2022
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: None
Power Management: BIOS and OS set to prefer performance at
the cost of additional power usage
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPEC CPU®2017 Floating Point Speed Result
Copyright 2017-2023 Standard Performance Evaluation Corporation

HPE

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>32</td>
<td>78.1</td>
<td>756</td>
<td>78.1</td>
<td>755</td>
<td>78.2</td>
<td>754</td>
<td>32</td>
<td>78.0</td>
<td>757</td>
<td>78.0</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>32</td>
<td>50.4</td>
<td>331</td>
<td>50.3</td>
<td>332</td>
<td>50.8</td>
<td>328</td>
<td>32</td>
<td>50.4</td>
<td>331</td>
<td>50.3</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>32</td>
<td>31.3</td>
<td>168</td>
<td>31.3</td>
<td>167</td>
<td>31.4</td>
<td>167</td>
<td>32</td>
<td>31.2</td>
<td>168</td>
<td>31.2</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>32</td>
<td>60.4</td>
<td>219</td>
<td>60.5</td>
<td>219</td>
<td>60.3</td>
<td>219</td>
<td>32</td>
<td>59.2</td>
<td>223</td>
<td>59.1</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>32</td>
<td>68.1</td>
<td>130</td>
<td>68.5</td>
<td>129</td>
<td>68.4</td>
<td>130</td>
<td>32</td>
<td>68.1</td>
<td>130</td>
<td>68.4</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>32</td>
<td>117</td>
<td>101</td>
<td>117</td>
<td>101</td>
<td>117</td>
<td>101</td>
<td>32</td>
<td>114</td>
<td>104</td>
<td>114</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>32</td>
<td>60.0</td>
<td>241</td>
<td>59.9</td>
<td>241</td>
<td>59.8</td>
<td>241</td>
<td>32</td>
<td>59.8</td>
<td>241</td>
<td>59.9</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>32</td>
<td>48.4</td>
<td>361</td>
<td>48.4</td>
<td>361</td>
<td>48.4</td>
<td>361</td>
<td>32</td>
<td>48.4</td>
<td>361</td>
<td>48.4</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>32</td>
<td>66.6</td>
<td>137</td>
<td>66.4</td>
<td>137</td>
<td>66.4</td>
<td>137</td>
<td>32</td>
<td>66.6</td>
<td>137</td>
<td>66.4</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>32</td>
<td>56.3</td>
<td>280</td>
<td>56.3</td>
<td>280</td>
<td>56.5</td>
<td>279</td>
<td>32</td>
<td>53.4</td>
<td>295</td>
<td>53.4</td>
</tr>
</tbody>
</table>

Specspeed®2017_fp_base = 229
Specspeed®2017_fp_peak = 232

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit
'ulimit -l 2097152' was used to set environment locked pages in memory limit
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

To limit dirty cache to 8% of memory, 'sysctl -w vm.dirty_ratio=8' run as root.
To limit swap usage to minimum necessary, 'sysctl -w vm.swappiness=1' run as root.
To free node-local memory and avoid remote memory usage, 'sysctl -w vm.zone_reclaim_mode=1' run as root.
To clear filesystem caches, 'sync; sysctl -w vm.drop_caches=3' run as root.
To disable filesystem layout randomization (ASLR) to reduce run-to-run variability, 'sysctl -w kernel.randomize_va_space=0' run as root.

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>SPECspeed®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>229</td>
<td>232</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Operating System Notes (Continued)

To enable Transparent Hugepages (THP) for all allocations,
'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and
'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To always enable THP for peak runs of:
603.bwaves_s, 607.cactuBSSN_s, 619.lbm_s, 627.cam4_s, 628.pop2_s, 638.imagick_s, 644.nab_s, 649.fotonik3d_s:
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled; echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To disable THP for peak runs of 621.wrf_s:
'echo never > /sys/kernel/mm/transparent_hugepage/enabled; echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To enable THP only on request for peak runs of 654.roms_s:
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled; echo madvise > /sys/kernel/mm/transparent_hugepage/defrag' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-31"
LD_LIBRARY_PATH = "/home/cpu2017/amd_speed_aocc400_genoa_B_lib/lib:"
LIBOMP_NUM_HIDDEN_HELPER_THREADS = "0"
MALLOC_CONF = "oversize_threshold:0,retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "32"

Environment variables set by runcpu during the 603.bwaves_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 619.lbm_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 621.wrf_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 628.pop2_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 638.imagick_s peak run:
GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 654.roms_s peak run:
GOMP_CPU_AFFINITY = "0 16 1 17 2 18 3 19 4 20 5 21 6 22 7 23 8 24 9 25 10 26 11 27 12 28 13 29 14 30 15 31"
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

General Notes

Binaries were compiled on a system with 2x AMD EPYC 9174F CPU + 1.5TiB Memory using RHEL 8.6

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration
Workload Profile set to General Peak Frequency Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
AMD SMT Option set to Disabled
Last-Level Cache (LLC) as NUMA Node set to Enabled
ACPI C2 Latency set to 18 microseconds
Memory PStates set to Disabled
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
Power Regulator set to OS Control Mode

The system ROM used for this result contains microcode version 0xa10110e for the AMD EPYC 9nn4X family of processors. The reference code/AGESA version used in this ROM is version GenoaPI 1.0.0.1-L6

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16aca64d
running on localhost.localdomain Thu Apr 7 05:34:08 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 9334 32-Core Processor
 1 "physical id"s (chips)
 32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 32
siblings : 32
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(Continued on next page)
Hewlett Packard Enterprise
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

From lscpu from util-linux 2.37.4:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
BIOS Vendor ID: Advanced Micro Devices, Inc.
Model name: AMD EPYC 9334 32-Core Processor
BIOS Model name: AMD EPYC 9334 32-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 1
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3910.2529
CPU min MHz: 1500.0000
BogoMIPS: 5391.78
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
pg e mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
pdpe1gb rdtscp lm constant_tsc rep_good nopl cpuid extd_apicid
aperfmperf rafi pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe
popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignaviours 3nowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb
bext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs
ibpb stibp vmmcall fsqbsize bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f
avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_wl avx512bw
avx512vl xsaves xtuneopt xtune xgetbv1 xsave avx2b bmi1 bmi2 cqm rdt_a avx512f
avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_wl avx512bw
avx512vl xsaves xtuneopt xtune xgetbv1 xsave avx2b bmi1 bmi2 cqm rdt_a avx512f
avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_wl avx512bw
Virtualization: AMD-V
L1d cache: 1 MiB (32 instances)
L1i cache: 1 MiB (32 instances)
L2 cache: 32 MiB (32 instances)
L3 cache: 128 MiB (4 instances)
NUMA node(s): 4
NUMA node0 CPU(s): 0-7
NUMA node1 CPU(s): 16-23
NUMA node2 CPU(s): 24-31
NUMA node3 CPU(s): 8-15

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Software Availability: Nov-2022

Test Date: Dec-2022
Hardware Availability: Dec-2022

Platform Notes (Continued)

Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

From lscpu --cache:
NAME ONE-SIZE ALL-SIZE WAYS TYPE LEVEL SETS PHY-LINE COHERENCY-SIZE
L1d 32K 1M 8 Data 1 64 1 64
L1i 32K 1M 8 Instruction 1 64 1 64
L2 1M 32M 8 Unified 2 2048 1 64
L3 32M 128M 16 Unified 3 32768 1 64

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7
node 0 size: 193287 MB
node 0 free: 192787 MB
node 1 cpus: 16 17 18 19 20 21 22 23
node 1 size: 193497 MB
node 1 free: 193223 MB
node 2 cpus: 24 25 26 27 28 29 30 31
node 2 size: 193487 MB
node 2 free: 193118 MB
node 3 cpus: 8 9 10 11 12 13 14 15
node 3 size: 193534 MB
node 3 free: 193041 MB
node distances:
node 0 1 2 3
 0: 10 11 11 11
 1: 11 10 11 11
 2: 11 11 10 11
 3: 11 11 11 10

From /proc/meminfo
MemTotal: 792378588 kB

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

HugePages_Total: 0
Hugepagesize: 2048 kB

/sbin/tuned-adm active
Current active profile: throughput-performance

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

From /etc/*release* /etc/*version*

os-release:
NAME="Red Hat Enterprise Linux"
VERSION="9.0 (Plow)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="9.0"
PLATFORM_ID="platform:el9"
PRETTY_NAME="Red Hat Enterprise Linux 9.0 (Plow)"
ANSI_COLOR="0;31"

redhat-release: Red Hat Enterprise Linux release 9.0 (Plow)
system-release: Red Hat Enterprise Linux release 9.0 (Plow)
system-release-cpe: cpe:/o:redhat:enterprise_linux:9::baseos

uname -a:
Linux localhost.localdomain 5.14.0-70.13.1.el9_0.x86_64 #1 SMP PREEMPT Thu Apr 14 12:42:38 EDT 2022 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swaps barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Retpolines, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Apr 7 05:30

SPEC is set to: /home/cpu2017

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/rhel-home xfs 372G 17G 356G 5% /home

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL325 Gen11
Product Family: ProLiant
Serial: DL325GEN11-002

Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
12x Hynix HMCG94MEBRA121N 64 GB 2 rank 4800

BIOS:
BIOS Vendor: HPE
BIOS Version: 1.12
BIOS Date: 11/24/2022
BIOS Revision: 1.12
Firmware Revision: 1.10

(End of data from sysinfo program)

Compiler Version Notes

==
<table>
<thead>
<tr>
<th>C</th>
<th>619.lbm_s(base, peak) 638.imagick_s(base, peak) 644.nab_s(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)</td>
<td></td>
</tr>
<tr>
<td>Target: x86_64-unknown-linux-gnu</td>
<td></td>
</tr>
<tr>
<td>Thread model: posix</td>
<td></td>
</tr>
<tr>
<td>InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin</td>
<td></td>
</tr>
</tbody>
</table>
==

==
<table>
<thead>
<tr>
<th>C++, C, Fortran</th>
<th>607.cactuBSSN_s(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)</td>
<td></td>
</tr>
<tr>
<td>Target: x86_64-unknown-linux-gnu</td>
<td></td>
</tr>
<tr>
<td>Thread model: posix</td>
<td></td>
</tr>
<tr>
<td>InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin</td>
<td></td>
</tr>
</tbody>
</table>
==

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==
Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
| 654.roms_s(base, peak)
==

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

==
Fortran, C | 621.wrf_s(base, peak) 627.cam4_s(base, peak)
| 628.pop2_s(base, peak)
==

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Base Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -W1,-mllvm -W1,-align-all-nofallthru-blocks=6
-W1,-mllvm -W1,-reduce-array-computations=3 -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
-DSPEC_OPENMP -zopt -fopenmp=libomp -lomp -lamdlibm -lamdalloc
-llflang

Fortran benchmarks:
-m64 -W1,-mllvm -W1,-align-all-nofallthru-blocks=6
-W1,-mllvm -W1,-reduce-array-computations=3
-W1,-mllvm -W1,-enable-X86-prefetching -DSPEC_OPENMP -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto -Mrecursive
-funroll-loops -mllvm -lsr-in-nested-loop
-mllvm -reduce-array-computations=3 -zopt -fopenmp=libomp -lomp
-lamdlibm -lamdalloc -llflang

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Base Optimization Flags (Continued)

Benchmarks using both Fortran and C:
- m64 -Wl,-mlibm -Wl,-align-all-nofallback-thru-blocks=6
- Wl,-mlibm -Wl,-reduce-array-computations=3
- Wl,-mlibm -Wl,-enable-X86-prefetching -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
- mlibm -unroll-threshold=50 -mlibm -inline-threshold=1000
- fremap-arrays -fstrip-mining -mlibm -reduce-array-computations=3
- DSPEC_OPENMP -zopt -Mrecursive -funroll-loops
- mlibm -lsl-in-nested-loop -fopenmp=libomp -lomp -amlibm -amlalloc
- lflang

Benchmarks using Fortran, C, and C++:
- m64 -Wl,-mlibm -Wl,-align-all-nofallback-thru-blocks=6
- Wl,-mlibm -Wl,-reduce-array-computations=3
- Wl,-mlibm -Wl,-x86-use-vzeroupper=false -O3 -march=znver4
- fveclib=AMDLIBM -ffast-math -fopenmp -flto -fstruct-layout=7
- mlibm -unroll-threshold=50 -mlibm -inline-threshold=1000
- fremap-arrays -fstrip-mining -mlibm -reduce-array-computations=3
- DSPEC_OPENMP -zopt -Mrecursive -funroll-loops
- mlibm -lsl-in-nested-loop -fopenmp=libomp -lomp -amlibm -amlalloc
- lflang

Base Other Flags

C benchmarks:
- Wno-return-type -Wno-unused-command-line-argument

Fortran benchmarks:
- Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
- Wno-return-type -Wno-unused-command-line-argument

Benchmarks using Fortran, C, and C++:
- Wno-return-type -Wno-unused-command-line-argument

Peak Compiler Invocation

C benchmarks:
clang

(Continued on next page)
Peak Compiler Invocation (Continued)

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

638.imagick_s: Same as 619.lbm_s

644.nab_s: basepeak = yes

Fortran benchmarks:

649.fotonik3d_s: basepeak = yes

(Continued on next page)
Peak Optimization Flags (Continued)

654.roms_s: Same as 603.bwaves_s

Benchmarks using both Fortran and C:

627.cam4_s: basepeak = yes

Benchmarks using Fortran, C, and C++:

607.cactuBSSN_s: basepeak = yes

Peak Other Flags

C benchmarks:
-Wno-return-type -Wno-unused-command-line-argument

Fortran benchmarks:
-Wno-unused-command-line-argument

Benchmarks using both Fortran and C:
-Wno-return-type -Wno-unused-command-line-argument
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen11
(2.70 GHz, AMD EPYC 9334)

SPECspeed®2017_fp_base = 229
SPECspeed®2017_fp_peak = 232

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Dec-2022
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Peak Other Flags (Continued)

Benchmarks using Fortran, C, and C++:
-Wno-return-type -Wno-unused-command-line-argument

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.html
http://www.spec.org/cpu2017/flags/aocc400-flags.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.xml
http://www.spec.org/cpu2017/flags/aocc400-flags.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-04-06 20:04:07-0400.
Report generated on 2023-02-15 10:35:31 by CPU2017 PDF formatter v6442.
Originally published on 2023-02-14.