Hardware
- **CPU Name:** Intel Xeon Platinum 8452Y
- **Max MHz:** 3200
- **Nominal:** 2000
- **Enabled:** 72 cores, 2 chips, 2 threads/core
- **Orderable:** 1, 2 chip(s)
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **L2:** 2 MB I+D on chip per core
- **L3:** 67.5 MB I+D on chip per core
- **Memory:** 1 TB (16 x 64 GB 2Rx4 PC5-4800B-R)
- **Storage:** 1 x 960 GB SATA SSD
- **Other:** None

Software
- **OS:** Red Hat Enterprise Linux 9.0 (Plow)
 - Kernel 5.14.0-70.13.1.el9_0.x86_64
- **Compiler:** C/C++: Version 2022.1 of Intel oneAPI DPC++/C++ Compiler for Linux;
 - Fortran: Version 2022.1 of Intel Fortran Compiler for Linux
- **Parallel:** No
- **Firmware:** HPE BIOS Version v1.22 01/18/2023 released Jan-2023
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc memory allocator V5.0.1
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage

Hewlett Packard Enterprise

Test Sponsor: HPE

ProLiant DL360 Gen11

(2.00 GHz, Intel Xeon Platinum 8452Y)

SPEC CPU 2017 Floating Point Rate Result

Copyright 2017-2023 Standard Performance Evaluation Corporation

Test Sponsor: HPE

Hewlett Packard Enterprise

ProLiant DL360 Gen11

(2.00 GHz, Intel Xeon Platinum 8452Y)

SPECrate 2017_fp_base = 693

SPECrate 2017_fp_peak = 702

CPU2017 License: 3

Test Sponsor: HPE

Hardware Availability: Jan-2023

Software Availability: May-2022

Performance Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>SPECrate 2017_fp_base</th>
<th>SPECrate 2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>144</td>
<td>3600</td>
<td>3590</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>144</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>144</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>144</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>144</td>
<td>702</td>
<td></td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>144</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>144</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>144</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>144</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>144</td>
<td>1780</td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>144</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>144</td>
<td>1360</td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>144</td>
<td>502</td>
<td></td>
</tr>
</tbody>
</table>

Test Date: Mar-2023

Test Sponsor: HPE

Hardware Availability: Jan-2023

Software Availability: May-2022

Machine Information:

- **CPU Name:** Intel Xeon Platinum 8452Y
- **Max MHz:** 3200
- **Nominal:** 2000
- **Enabled:** 72 cores, 2 chips, 2 threads/core
- **Orderable:** 1, 2 chip(s)
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **L2:** 2 MB I+D on chip per core
- **L3:** 67.5 MB I+D on chip per core
- **Memory:** 1 TB (16 x 64 GB 2Rx4 PC5-4800B-R)
- **Storage:** 1 x 960 GB SATA SSD
- **Other:** None

Software Information:

- **OS:** Red Hat Enterprise Linux 9.0 (Plow)
 - Kernel 5.14.0-70.13.1.el9_0.x86_64
- **Compiler:** C/C++: Version 2022.1 of Intel oneAPI DPC++/C++ Compiler for Linux;
 - Fortran: Version 2022.1 of Intel Fortran Compiler for Linux
- **Parallel:** No
- **Firmware:** HPE BIOS Version v1.22 01/18/2023 released Jan-2023
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc memory allocator V5.0.1
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage

Page 1

Standard Performance Evaluation Corporation (info@spec.org) https://www.spec.org/
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Base Copies</th>
<th>Base Seconds</th>
<th>Base Ratio</th>
<th>Base Seconds</th>
<th>Base Ratio</th>
<th>Peak Copies</th>
<th>Peak Seconds</th>
<th>Peak Ratio</th>
<th>Peak Seconds</th>
<th>Peak Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>144</td>
<td>403</td>
<td>3590</td>
<td>402</td>
<td>3590</td>
<td>144</td>
<td>403</td>
<td>3590</td>
<td>402</td>
<td>3590</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>144</td>
<td>230</td>
<td>792</td>
<td>228</td>
<td>798</td>
<td>144</td>
<td>230</td>
<td>792</td>
<td>228</td>
<td>798</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>144</td>
<td>314</td>
<td>436</td>
<td>313</td>
<td>437</td>
<td>144</td>
<td>314</td>
<td>436</td>
<td>313</td>
<td>437</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>144</td>
<td>1056</td>
<td>357</td>
<td>1057</td>
<td>356</td>
<td>144</td>
<td>1056</td>
<td>357</td>
<td>1057</td>
<td>356</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>144</td>
<td>479</td>
<td>701</td>
<td>479</td>
<td>702</td>
<td>144</td>
<td>479</td>
<td>701</td>
<td>479</td>
<td>702</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>144</td>
<td>443</td>
<td>342</td>
<td>443</td>
<td>342</td>
<td>144</td>
<td>443</td>
<td>342</td>
<td>443</td>
<td>342</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>144</td>
<td>597</td>
<td>540</td>
<td>598</td>
<td>540</td>
<td>144</td>
<td>597</td>
<td>540</td>
<td>598</td>
<td>540</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>144</td>
<td>325</td>
<td>675</td>
<td>326</td>
<td>672</td>
<td>144</td>
<td>325</td>
<td>675</td>
<td>326</td>
<td>672</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>144</td>
<td>333</td>
<td>755</td>
<td>335</td>
<td>751</td>
<td>144</td>
<td>333</td>
<td>755</td>
<td>335</td>
<td>751</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>144</td>
<td>201</td>
<td>1780</td>
<td>201</td>
<td>1780</td>
<td>144</td>
<td>201</td>
<td>1780</td>
<td>201</td>
<td>1780</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>144</td>
<td>212</td>
<td>1150</td>
<td>211</td>
<td>1150</td>
<td>144</td>
<td>212</td>
<td>1150</td>
<td>211</td>
<td>1150</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>144</td>
<td>1118</td>
<td>502</td>
<td>1116</td>
<td>503</td>
<td>144</td>
<td>1118</td>
<td>502</td>
<td>1116</td>
<td>503</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>144</td>
<td>805</td>
<td>284</td>
<td>805</td>
<td>284</td>
<td>144</td>
<td>805</td>
<td>284</td>
<td>805</td>
<td>284</td>
</tr>
</tbody>
</table>

SPECrate®2017_fp_base = 693

SPECrate®2017_fp_peak = 702

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
```
sync; echo 3 > /proc/sys/vm/drop_caches
```
runcpu command invoked through numactl i.e.:
```
numactl --interleave=all runcpu <etc>
```

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
```
LD_LIBRARY_PATH = "/home/cpu2017/lib/intel64:/home/cpu2017/je5.0.1-64"
MALLOC_CONF = "retain:true"
```
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 693</th>
<th>CPU2017 License: 3</th>
<th>Test Date: Mar-2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_fp_peak = 702</td>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Jan-2023</td>
</tr>
<tr>
<td></td>
<td>Tested by: HPE</td>
<td>Software Availability: May-2022</td>
</tr>
</tbody>
</table>

General Notes

Binaries compiled on a system with 2x Intel Xeon Platinum 8280M CPU + 384GB RAM memory using Red Hat Enterprise Linux 8.4
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

The system ROM used for this result contains Intel microcode version 0x2b000161 for the Intel Xeon Platinum 8452Y processor.
BIOS Configuration:
- Workload Profile set to General Throughput Compute
- Thermal Configuration set to Maximum Cooling
- Enhanced Processor Performance Profile set to Aggressive
- Last Level Cache (LLC) Dead Line Allocation set to Disabled
- Memory Patrol Scrubbing set to Disabled
- Workload Profile set to Custom
- DCU Stream Prefetcher set to Disabled
- Adjacent Sector Prefetch set to Disabled
- Minimum Processor Idle Power Package C-State set to Package C6 (non-retention) State

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6732 of 2022-11-07 fe91c89b7ed5c36ae2c92cc097bec197
running on localhost.localdomain Sat Jun 25 05:10:11 2022

SUT (System Under Test) info as seen by some common utilities.

Table of contents

1. uname -a
2. w
3. Username
4. ulimit -a
5. sysinfo process ancestry
6. /proc/cpuinfo
7. lscpu
8. numactl --hardware
9. /proc/meminfo
10. who -r

(Continued on next page)
Platform Notes (Continued)

11. Systemd service manager version: systemd 250 (250-6.el9_0)
12. Services, from systemctl list-unit-files
13. Linux kernel boot-time arguments, from /proc/cmdline
14. cpupower frequency-info
15. sysctl
16. /sys/kernel/mm/transparent_hugepage
17. /sys/kernel/mm/transparent_hugepage/khugepaged
18. OS release
19. Disk information
20. /sys/devices/virtual/dmi/id
21. dmidecode
22. BIOS

1. uname -a
 Linux localhost.localdomain 5.14.0-70.13.1.el9_0.x86_64 #1 SMP PREEMPT Thu Apr 14 12:42:38 EDT 2022 x86_64
 x86_64 x86_64 GNU/Linux

2. w
 05:10:11 up 14 min, 0 users, load average: 0.00, 0.00, 0.00
 USER TTY LOGIN@ IDLE JCPU PCPU WHAT

3. Username
 From environment variable $USER: root

4. ulimit -a
 real-time non-blocking time (microseconds, -R) unlimited
 core file size (blocks, -c) 0
 data seg size (kbytes, -d) unlimited
 scheduling priority (-e) 0
 file size (blocks, -f) unlimited
 pending signals (-i) 4127108
 max locked memory (kbytes, -l) 64
 max memory size (kbytes, -m) unlimited
 open files (-n) 1024
 pipe size (512 bytes, -p) 8
 POSIX message queues (bytes, -q) 819200
 real-time priority (-r) 0
 stack size (kbytes, -s) unlimited
 cpu time (seconds, -t) unlimited
 max user processes (-u) 4127108
 virtual memory (kbytes, -v) unlimited
 file locks (-x) unlimited

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3</th>
<th>Test Date:</th>
<th>Mar-2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
<td>Hardware Availability:</td>
<td>Jan-2023</td>
</tr>
<tr>
<td>Tested by:</td>
<td>HPE</td>
<td>Software Availability:</td>
<td>May-2022</td>
</tr>
</tbody>
</table>

SPECrate®2017_fp_base = 693

SPECrate®2017_fp_peak = 702

Platform Notes (Continued)

5. **sysinfo process ancestry**

 /usr/lib/systemd/systemd --switched-root --system --deserialize 30

 ssqd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups

 sshd: root [priv]

 sshd: root@notty

 bash -c cd $SPEC/ && $SPEC/fprate.sh

 runcpu --nobuild --action validate --define default-platform-flags --define numcopies=144 -c
 ic2022.1-lin-core-avx512-rate-20220316.cfg --define cores=144 --define physicalfirst --define
 invoke_with_interleave --define drop_caches --tune base,peak -o all fprate

 runcpu --nobuild --action validate --define default-platform-flags --define numcopies=144 --configfile
 ic2022.1-lin-core-avx512-rate-20220316.cfg --define cores=144 --define physicalfirst --define
 invoke_with_interleave --define drop_caches --tune base,peak --output_format all --nopower --runmode rate
 --tune base:peak --size refrate fprate --nopreenv --note-preenv --logfile
 $SPEC/tmp/CPU2017.001/templogs/preenv.fprate.001.0.log --lognum 001.0 --from_runcpu 2

 specperl $SPEC/bin/sysinfo

 $SPEC = /home/cpu2017

6. **/proc/cpuinfo**

 - **model name**: Intel(R) Xeon(R) Platinum 8452Y
 - **vendor_id**: GenuineIntel
 - **cpu family**: 6
 - **model**: 143
 - **stepping**: 6
 - **microcode**: 0x2b000161
 - **bugs**: spectre_v1 spectre_v2 spec_store_bypass swapgs
 - **cpu cores**: 36
 - **siblings**: 72
 - **2 physical ids (chips)**
 - **144 processors (hardware threads)**
 - **physical id 0**: core ids 0-35
 - **physical id 1**: core ids 0-35
 - **physical id 0**: apicids 0-71
 - **physical id 1**: apicids 128-199

 Caution: /proc/cpuinfo data regarding chips, cores, and threads is not necessarily reliable, especially for
 virtualized systems. Use the above data carefully.

7. **lscpu**

 From lscpu from util-linux 2.37.4:

 - **Architecture**: x86_64
 - **CPU op-mode(s)**: 32-bit, 64-bit
 - **Address sizes**: 46 bits physical, 57 bits virtual
 - **Byte Order**: Little Endian
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
</tr>
<tr>
<td>Tested by:</td>
<td>HPE</td>
</tr>
<tr>
<td>SPECrate®2017_fp_base =</td>
<td>693</td>
</tr>
<tr>
<td>SPECrate®2017_fp_peak =</td>
<td>702</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Mar-2023</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Jan-2023</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>May-2022</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

| Feature | Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU(s):</td>
<td>144</td>
</tr>
<tr>
<td>On-line CPU(s) list:</td>
<td>0-143</td>
</tr>
<tr>
<td>Vendor ID:</td>
<td>GenuineIntel</td>
</tr>
<tr>
<td>BIOS Vendor ID:</td>
<td>Intel(R) Corporation</td>
</tr>
<tr>
<td>Model name:</td>
<td>Intel(R) Xeon(R) Platinum 8452Y</td>
</tr>
<tr>
<td>BIOS Model name:</td>
<td>Intel(R) Xeon(R) Platinum 8452Y</td>
</tr>
<tr>
<td>CPU family:</td>
<td>6</td>
</tr>
<tr>
<td>Model:</td>
<td>143</td>
</tr>
<tr>
<td>Thread(s) per core:</td>
<td>2</td>
</tr>
<tr>
<td>Core(s) per socket:</td>
<td>36</td>
</tr>
<tr>
<td>Socket(s):</td>
<td>2</td>
</tr>
<tr>
<td>Stepping:</td>
<td>6</td>
</tr>
<tr>
<td>BogoMIPS:</td>
<td>4000.00</td>
</tr>
<tr>
<td>Flags:</td>
<td>fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 ceflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtrunc pdcm pclid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_13 cat_12 cd p3 l3 invpcid_single cd p2 l2 asid ibrs ibpb ibrs_end ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma cflushtp ciwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaves xsaveopt xsavin xgetbv xsave xsvsave cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local split_lock_detect avx_vnni avx512_bc16 wbinvd dtherm ida arat plt avx512vbm unipk pu pke waitpkg avx512_vbmi2 gfn vaes vpcmullqavx512_vnni avx512_bitalg tme avx512_vpopcntdq 1a57 rdpid bus_lock_detect cldemote movdidi movdir64b enqcmd fmae md_clear serialize tsxtdtrk pconfig arch_lbr avx512_fp16 amx_tile flush_l1d arch_capabilities VT-x</td>
</tr>
<tr>
<td>L1d cache:</td>
<td>3.4 MiB (72 instances)</td>
</tr>
<tr>
<td>L1i cache:</td>
<td>2.3 MiB (72 instances)</td>
</tr>
<tr>
<td>L2 cache:</td>
<td>144 MiB (72 instances)</td>
</tr>
<tr>
<td>L3 cache:</td>
<td>135 MiB (2 instances)</td>
</tr>
<tr>
<td>NUMA node(s):</td>
<td>8</td>
</tr>
<tr>
<td>NUMA node0 CPU(s):</td>
<td>0-8,72-80</td>
</tr>
<tr>
<td>NUMA node1 CPU(s):</td>
<td>9-17,81-89</td>
</tr>
<tr>
<td>NUMA node2 CPU(s):</td>
<td>18-26,90-98</td>
</tr>
<tr>
<td>NUMA node3 CPU(s):</td>
<td>27-35,99-107</td>
</tr>
<tr>
<td>NUMA node4 CPU(s):</td>
<td>36-44,108-116</td>
</tr>
<tr>
<td>NUMA node5 CPU(s):</td>
<td>45-53,117-125</td>
</tr>
<tr>
<td>NUMA node6 CPU(s):</td>
<td>54-62,126-134</td>
</tr>
<tr>
<td>NUMA node7 CPU(s):</td>
<td>63-71,135-143</td>
</tr>
<tr>
<td>Vulnerability Itlb multihit:</td>
<td>Not affected</td>
</tr>
<tr>
<td>Vulnerability L1tf:</td>
<td>Not affected</td>
</tr>
<tr>
<td>Vulnerability Mds:</td>
<td>Not affected</td>
</tr>
</tbody>
</table>

(Continued on next page)
Platform Notes (Continued)

- **Vulnerability Meltdown**: Not affected
- **Vulnerability Spec store bypass**: Mitigation; Speculative Store Bypass disabled via prctl
- **Vulnerability Spectre v1**: Mitigation; usercopy/swaps barriers and __user pointer sanitization
- **Vulnerability Spectre v2**: Mitigation; Enhanced IBRS, IBFB conditional, RSB filling
- **Vulnerability Srbds**: Not affected
- **Vulnerability Tsx async abort**: Not affected

From `lscpu --cache`:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ONE-SIZE</th>
<th>ALL-SIZE</th>
<th>WAYS</th>
<th>TYPE</th>
<th>LEVEL</th>
<th>SETS</th>
<th>PHY-LINE</th>
<th>COHERENCY-SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1d</td>
<td>48K</td>
<td>3.4M</td>
<td>12</td>
<td>Data</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L1i</td>
<td>32K</td>
<td>2.3M</td>
<td>8</td>
<td>Instruction</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L2</td>
<td>2M</td>
<td>144M</td>
<td>16</td>
<td>Unified</td>
<td>2</td>
<td>2048</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L3</td>
<td>67.5M</td>
<td>135M</td>
<td>15</td>
<td>Unified</td>
<td>3</td>
<td>73728</td>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

8. `numactl --hardware`

NOTE: a numactl 'node' might or might not correspond to a physical chip.

- available: 8 nodes (0-7)
- node 0 cpus: 0-8,72-80
- node 0 size: 128733 MB
- node 0 free: 127970 MB
- node 1 cpus: 9-17,81-89
- node 1 size: 129020 MB
- node 1 free: 128571 MB
- node 2 cpus: 18-26,90-98
- node 2 size: 129020 MB
- node 2 free: 128571 MB
- node 3 cpus: 27-35,99-107
- node 3 size: 129020 MB
- node 3 free: 128689 MB
- node 4 cpus: 36-44,108-116
- node 4 size: 129020 MB
- node 4 free: 128670 MB
- node 5 cpus: 45-53,117-125
- node 5 size: 128983 MB
- node 5 free: 128577 MB
- node 6 cpus: 54-62,126-134
- node 6 size: 129020 MB
- node 6 free: 128866 MB
- node 7 cpus: 63-71,135-143
- node 7 size: 129000 MB
- node 7 free: 128639 MB
- node distances:

```plaintext
node 0 1 2 3 4 5 6 7
 0: 10 20 30 30 30 30 30
 1: 20 10 30 30 30 30 30
 2: 30 30 10 20 30 30 30
```

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

SPECrate®2017_fp_base = 693
SPECrate®2017_fp_peak = 702

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

3: 30 30 20 10 30 30 30 30
4: 30 30 30 30 10 20 30 30
5: 30 30 30 30 20 10 30 30
6: 30 30 30 30 30 10 20
7: 30 30 30 30 30 20 10

9. /proc/meminfo
 MemTotal: 1056580604 kB

10. who -r
 run-level 3 Jun 25 04:55

11. Systemd service manager version: systemd 250 (250-6.el9_0)
 Default Target Status
 multi-user running

12. Services, from systemctl list-unit-files
 STATE UNIT FILES
 enabled NetworkManager NetworkManager-dispatcher NetworkManager-wait-online audidt chrony crond
dbus-broker firewalld getty@ irqbalance kvm2-monitor mdmonitor microcode
nis-domainname rhsmcertd rsyslog selinux-autorelabel-mark sshd sssd
systemd-network-generator udisks2
 enabled-runtime systemctl-remount-fs
 disabled blk-availability chrony-wait console-getty cpupower debug-shell kvm_stat
man-db-restart-cache-update nftables rdisc rshm rhsm-facts rpmbuild-rebuild serial-getty@
sshd-keygen@ systemd-boot-check-no-failures systemd-pstore systemd-sysext
 indirect sssd-autofs sssd-kcm sssd-nss sssd-pac sssd-pam sssd-ssh sssd-sudo

13. Linux kernel boot-time arguments, from /proc/cmdline
 BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-70.13.1.el9_0.x86_64
 root=/dev/mapper/rhel-root
 ro
 resume=/dev/mapper/rhel-swap
 rd.lvm.lv=rhel/root
 rd.lvm.lv=rhel swap

14. cpupower frequency-info
 analyzing CPU 0:
 Unable to determine current policy
 boost state support:
 Supported: yes

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

SPECrate®2017_fp_base = 693
SPECrate®2017_fp_peak = 702

Platform Notes (Continued)

Active: yes

15. sysctl
 kernel.numa_balancing 1
 kernel.randomize_va_space 2
 vm.compaction_proactiveness 20
 vm.dirty_background_bytes 0
 vm.dirty_background_ratio 10
 vm.dirty_bytes 0
 vm.dirty_expire_centisecs 3000
 vm.dirty_ratio 20
 vm.dirty_writeback_centisecs 500
 vm.dirtytime_expire_seconds 43200
 vm.extfrag_threshold 500
 vm.min_unmapped_ratio 1
 vm.nr_hugepages 0
 vm.nr_hugepages_mempolicy 0
 vm.nr_overcommit_hugepages 0
 vm.swappiness 60
 vm.watermark_boost_factor 15000
 vm.watermark_scale_factor 10
 vm.zone_reclaim_mode 0

16. /sys/kernel/mm/transparent_hugepage
 defrag always defer defer+madvise [madvise] never
 enabled [always] madvise never
 hpage_pmd_size 2097152
 shmem_enabled always within_size advise [never] deny force

17. /sys/kernel/mm/transparent_hugepage/khugepaged
 alloc_sleep_millisecs 60000
 defrag 1
 max_ptes_none 511
 max_ptes_shared 256
 max_ptes_swap 64
 pages_to_scan 4096
 scan_sleep_millisecs 10000

18. OS release
 From /etc/*-release /etc/*-version
 os-release Red Hat Enterprise Linux 9.0 (Plow)
 redhat-release Red Hat Enterprise Linux release 9.0 (Plow)
 system-release Red Hat Enterprise Linux release 9.0 (Plow)

(Continued on next page)
Platform Notes (Continued)

19. Disk information
SPEC is set to: /home/cpu2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/rhel-home xfs 819G 138G 681G 17% /home

20. /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL360 Gen11
Product Family: ProLiant
Serial: CNX20800PZ

21. dmidecode
Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section.
The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately
determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the
"DMTF SMBIOS" standard.
Memory:
16x Samsung M321R8GA0BB0-CQKDG 64 GB 2 rank 4800

22. BIOS
(This section combines info from /sys/devices and dmidecode.)
BIOS Vendor: HPE
BIOS Version: 1.22
BIOS Date: 01/18/2023
BIOS Revision: 1.22
Firmware Revision: 1.10

Compiler Version Notes
==
C | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
 | 544.nab_r(base, peak)
==

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
==

C++ | 508.namd_r(base, peak) 510.parest_r(base, peak)
==

(Continued on next page)
Compiler Version Notes (Continued)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(base, peak) 526.blender_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

==
C++, C, Fortran | 507.cactuBSSN_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

==
Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak) 554.roms_r(base, peak)
==
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

==
Fortran, C | 521.wrf_r(base, peak) 527.cam4_r(base, peak)
==
Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

SPECrater®2017_fp_base = 693
SPECrater®2017_fp_peak = 702

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)
Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifx

Benchmarks using both Fortran and C:
ifx icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifx

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64
Base Optimization Flags

C benchmarks:
```
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

C++ benchmarks:
```
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Fortran benchmarks:
```
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Benchmarks using both Fortran and C:
```
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Benchmarks using both C and C++:
```
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Benchmarks using Fortran, C, and C++:
```
-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Peak Compiler Invocation

C benchmarks:
```
icx
```

C++ benchmarks:
```
icpx
```

Fortran benchmarks:
```
ifx
```

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

HPE

Peak Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
ifx icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifx

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast
-ffast-math -flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -qopt-vm-usage=high -Ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
508.namd_r: basepeak = yes
510.parest_r: basepeak = yes

Fortran benchmarks:
503.bwaves_r: basepeak = yes
549.fotonik3d_r: basepeak = yes
554.roms_r: basepeak = yes

Benchmarks using both Fortran and C:

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen11
(2.00 GHz, Intel Xeon Platinum 8452Y)

SPECrate®2017_fp_base = 693
SPECrate®2017_fp_peak = 702

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Mar-2023
Hardware Availability: Jan-2023
Software Availability: May-2022

Peak Optimization Flags (Continued)

521.wrf_r: basepeak = yes
527.cam4_r: basepeak = yes

Benchmarks using both C and C++:
511.povray_r: basepeak = yes
526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:
507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-SPR-rev1.1.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-SPR-rev1.1.xml

SPECIAL CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.9 on 2022-06-24 19:40:10-0400.
Report generated on 2023-04-12 12:44:28 by CPU2017 PDF formatter v6442.
Originally published on 2023-04-11.