SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

SPECrater®2017_int_base = 272
SPECrater®2017_int_peak = 281

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Oct-2023
Hardware Availability: Oct-2023
Software Availability: Dec-2022

Hardware
CPU Name: Intel Xeon Gold 6433N
Max MHz: 3600
Nominal: 2000
Enabled: 32 cores, 1 chip, 2 threads/core
Orderable: 1 Chip
Cache L1: 32 KB I + 48 KB D on chip per core
L2: 2 MB I+D on chip per core
L3: 60 MB I+D on chip per chip
Other: None
Memory: 256 GB (8 x 32 GB 2Rx8 PC5-4800B-R, running at 4400)
Storage: 1 x 480 GB Embedded SATA M.2 drive
Other: None

Software
OS: Red Hat Enterprise Linux 9.0 (Plow)
Kernel 5.14.0-70.13.1.el9_0.x86_64
Compiler: C/C++, Version 2023.0 of Intel oneAPI DPC++/C++
Compiler for Linux;
Fortran: Version 2023.0 of Intel Fortran Compiler for Linux;
Parallel: No
Firmware: HPE BIOS Version v1.50 (07/12/2023) released Jul-2023
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc memory allocator V5.0.1
Power Management: BIOS and OS set to prefer performance at the cost of additional power usage
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

SPECrate®2017_int_base = 272
SPECrate®2017_int_peak = 281

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>64</td>
<td>518</td>
<td>197</td>
<td>518</td>
<td>197</td>
<td>519</td>
<td>196</td>
<td>64</td>
<td>481</td>
<td>212</td>
<td>480</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>64</td>
<td>410</td>
<td>221</td>
<td>410</td>
<td>221</td>
<td>411</td>
<td>221</td>
<td>64</td>
<td>342</td>
<td>265</td>
<td>342</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>64</td>
<td>235</td>
<td>440</td>
<td>235</td>
<td>441</td>
<td>235</td>
<td>441</td>
<td>64</td>
<td>235</td>
<td>440</td>
<td>235</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>64</td>
<td>456</td>
<td>184</td>
<td>455</td>
<td>184</td>
<td>456</td>
<td>184</td>
<td>64</td>
<td>456</td>
<td>184</td>
<td>456</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>64</td>
<td>127</td>
<td>534</td>
<td>126</td>
<td>535</td>
<td>126</td>
<td>536</td>
<td>64</td>
<td>127</td>
<td>534</td>
<td>126</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>64</td>
<td>217</td>
<td>517</td>
<td>217</td>
<td>517</td>
<td>216</td>
<td>518</td>
<td>64</td>
<td>205</td>
<td>546</td>
<td>204</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>64</td>
<td>392</td>
<td>187</td>
<td>391</td>
<td>187</td>
<td>391</td>
<td>187</td>
<td>64</td>
<td>392</td>
<td>187</td>
<td>391</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>64</td>
<td>602</td>
<td>176</td>
<td>604</td>
<td>176</td>
<td>604</td>
<td>175</td>
<td>64</td>
<td>602</td>
<td>176</td>
<td>604</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>64</td>
<td>308</td>
<td>545</td>
<td>307</td>
<td>545</td>
<td>307</td>
<td>546</td>
<td>64</td>
<td>308</td>
<td>545</td>
<td>307</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>64</td>
<td>546</td>
<td>127</td>
<td>548</td>
<td>126</td>
<td>543</td>
<td>127</td>
<td>64</td>
<td>546</td>
<td>127</td>
<td>543</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

SPEC has ruled that the compiler used for this result was performing a compilation that specifically improves the performance of the 523.xalancbmk_r / 623.xalanchm_k_s benchmarks using a priori knowledge of the SPEC code and dataset to perform a transformation that has narrow applicability.

In order to encourage optimizations that have wide applicability (see rule 1.4 https://www.spec.org/cpu2017/Docs/runrules.html#rule_1.4), SPEC will no longer publish results using this optimization.

This result is left in the SPEC results database for historical reference.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor.

For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
IRQ balance service was stopped using "systemctl stop irqbalance.service"
tuned-adm profile was set to Accelerator-Performance using "tuned-adm profile accelerator-performance"
perf-bias for all the CPUs is set using "cpupower set -b 0"
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Oct-2023
Hardware Availability: Oct-2023
Software Availability: Dec-2022

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = */home/cpu2017/lib/intel64:/home/cpu2017/lib/ia32:/home/cpu2017/je5.0.1-32*
MALLOC_CONF = "retain:true"

General Notes

Binaries compiled on a system with 2x Intel Xeon Platinum 8280M CPU + 384GB RAM
memory using Red Hat Enterprise Linux 8.4
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the Red Hat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

The system ROM used for this result contains Intel microcode version 0x2b0004b1 for
the Intel Xeon Gold 6433N processor.
BIOS Configuration:
Workload Profile set to General Throughput Compute
Thermal Configuration set to Maximum Cooling
Enhanced Processor Performance Profile set to Aggressive
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Memory Patrol Scrubbing set to Disabled
Workload Profile set to Custom
DCU Stream Prefetcher set to Disabled
Adjacent Sector Prefetch set to Disabled
Minimum Processor Idle Power Package C-State set to Package C6 (non-retention) State

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: e6732 of 2022-11-07 fe91c89b7ed5c36e2c92cc097bec197
running on localhost.localdomain Thu Oct 5 07:23:50 2023

SUT (System Under Test) info as seen by some common utilities.

Table of contents

1. uname -a
2. w
3. Username
4. ulimit -a
5. sysinfo process ancestry
6. /proc/cpupinfo
7. lscpu
8. numactl --hardware
9. /proc/meminfo
10. who -r
11. Systemd service manager version: systemd 250 (250-6.6e19_0)
12. Services, from systemctl list-unit-files
13. Linux kernel boot-time arguments, from /proc/cmdline
14. cpupower frequency-info
15. tuned-adm active

(Continued on next page)
Platform Notes (Continued)

16. sysctl
17. /sys/kernel/mm/transparent_hugepage
18. /sys/kernel/mm/transparent_hugepage/khugepaged
19. OS release
20. Disk information
21. /sys/devices/virtual/dmi/id
22. dmidecode
23. BIOS

1. uname -a
 Linux localhost.localdomain 5.14.0-70.13.1.el9_0.x86_64 #1 SMP PREEMPT Thu Apr 14 12:42:38 EDT 2022 x86_64 x86_64 GNU/Linux

2. w
 07:23:50 up 2 min, 0 users, load average: 1.15, 0.99, 0.41
 USER TTY LOGIN@ IDLE JCPU PCPU WHAT

3. Username
 From environment variable $USER: root

4. ulimit -a
 real-time non-blocking time (microseconds, -R) unlimited
 core file size (blocks, -c) 0
 data seg size (kbytes, -d) unlimited
 scheduling priority (-e) 0
 file size (blocks, -f) unlimited
 pending signals (-i) 1030565
 max locked memory (kbytes, -l) 64
 max memory size (kbytes, -m) unlimited
 open files (-n) 1024
 pipe size (512 bytes, -p) 8
 POSIX message queues (bytes, -q) 819200
 real-time priority (-r) 0
 stack size (kbytes, -s) unlimited
 cpu time (seconds, -t) unlimited
 max user processes (-u) 1030565
 virtual memory (kbytes, -v) unlimited
 file locks (-x) unlimited

5. sysinfo process ancestry
 /usr/lib/systemd/systemd --switched-root --system --deserialize 30
 sshd: /usr/sbin/sshd -D [listener] 0 of 10-100 startups
 sshd: root [priv]
 sshd: root@notty
 bash -- cd $SPEC/ 66 $SPEC/intrate.sh
 runcpu --nobuild --action validate --define default-platform-flags --define numcopies=64 -c
 ic2023.0-lin-sapphirerapids-rate-20221201.cfg --define smt-on --define cores=32 --define physicalfirst
 --define invoke_with_interleave --define drop_caches --tune base,peak -o all intrate
 runcpu --nobuild --action validate --define default-platform-flags --define numcopies=64 --configfile
 ic2023.0-lin-sapphirerapids-rate-20221201.cfg --define smt-on --define cores=32 --define physicalfirst
 --define invoke_with_interleave --define drop_caches --tune base,peak --output_format all --nopower
 --runmode rate --tune base:peak --size reframe intrate --nopreenv --note-preenv --logfile
 $SPEC/tmp/CPU2017.001/templogs/preenv.intrate.001.0.log --lognum 001.0 --from_runcpu 2
 specperl $SPEC/bin/sysinfo

(Continued on next page)
Platform Notes (Continued)

$SPEC = /home/cpu2017

6. /proc/cpuinfo

 model name : Intel(R) Xeon(R) Gold 6433N
 vendor_id : GenuineIntel
 cpu family : 6
 model : 143
 stepping : 8
 microcode : 0x2b0004b1
 bugs : spectre_v1 spectre_v2 spec_store_bypass swapgs
 cpu cores : 32
 siblings : 64
 1 physical ids (chips)
 64 processors (hardware threads)
 physical id 0: core ids 0-31
 physical id 0: apicids 0-63
Caution: /proc/cpuinfo data regarding chips, cores, and threads is not necessarily reliable, especially for virtualized systems. Use the above data carefully.

7. lscpu

From lscpu from util-linux 2.37.4:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: GenuineIntel
BIOS Vendor ID: Intel(R) Corporation
Model name: Intel(R) Xeon(R) Gold 6433N
BIOS Model name: Intel(R) Xeon(R) Gold 6433N
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
Stepping: 8
BogoMIPS: 4000.00

Virtualization: VT-x
L1d cache: 1.5 MiB (32 instances)

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

SPECrate®2017_int_base = 272
SPECrate®2017_int_peak = 281

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Oct-2023
Tested by: HPE
Hardware Availability: Oct-2023
Software Availability: Dec-2022

Platform Notes (Continued)

L1i cache: 1 MiB (32 instances)
L2 cache: 64 MiB (32 instances)
L3 cache: 60 MiB (1 instance)
NUMA node(s): 2
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63
Vulnerability Itlb multihit: Not affected
Vulnerability L1t: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

From lscpu --cache:

<table>
<thead>
<tr>
<th>NAME ONE-SIZE ALL-SIZE WAYS TYPE</th>
<th>LEVEL</th>
<th>SETS</th>
<th>PHY-LINE</th>
<th>COHERENCY-SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1d 48K 1.5M 12 Data</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L1i 32K 1M 8 Instruction</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L2 2M 64M 16 Unified</td>
<td>2</td>
<td>2048</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>L3 60M 60M 15 Unified</td>
<td>3</td>
<td>65536</td>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

8. numactl --hardware

NOTE: a numactl 'node' might or might not correspond to a physical chip.

available: 2 nodes (0-1)
node 0 cpus: 0-15,32-47
node 0 size: 12867 MB
node 0 free: 12772 MB
node 1 cpus: 16-31,48-63
node 1 size: 12900 MB
node 1 free: 12835 MB
node distances:

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1:</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

9. /proc/meminfo

MemTotal: 263865544 kB

10. who -r

run-level 3 Oct 5 07:21

11. Systemd service manager version: systemd 250 (250-6.el9_0)

<table>
<thead>
<tr>
<th>Default Target</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-user</td>
<td>running</td>
</tr>
</tbody>
</table>

12. Services, from systemctl list-unit-files

<table>
<thead>
<tr>
<th>STATE</th>
<th>UNIT FILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>NetworkManager NetworkManager-dispatcher NetworkManager-wait-online auditd chronyd crond dbus-broker firewalld getty@ irqbalance kdump lvm2-monitor mdmonitor microcode nis-domainname rsh scrtd rsyslog selinux-autorelabel-mark sshd sssd systemd-network-generator tuned udisks2</td>
</tr>
</tbody>
</table>

(Continued on next page)
Platform Notes (Continued)

man-db-restart-cache-update nftables powertop rdisc rhsm rhsm-facts rpmdb-rebuild
serial-getty@ ssdh-keygen@ systemd-boot-check-no-failures systemd-pstore systemd-sysext
sssd-autofs sssd-kcm sssd-nss sssd-pac sssd-pam sssd-ssh sssd-sudo

13. Linux kernel boot-time arguments, from /proc/cmdline
   ```
   BOOT_IMAGE=(hd0,gpt2)/vmlinuz-5.14.0-70.13.1.el9_0.x86_64
   root=/dev/mapper/rhel-root
   ro
   resume=/dev/mapper/rhel-swap
   rd.lvm.lv=rhel/root
   rd.lvm.lv=rhel/swap
   ```

14. cpupower frequency-info
   ```
   analyzing CPU 0:
   Unable to determine current policy
   boost state support:
   Supported: yes
   Active: yes
   ```

15. tuned-adm active
   ```
   Current active profile: accelerator-performance
   ```

16. sysctl
   ```
   kernel.numa_balancing 1
   kernel.randomize_va_space 2
   vm.compaction_proactiveleness 20
   vm.dirty_background_bytes 0
   vm.dirty_background_ratio 10
   vm.dirty_bytes 0
   vm.dirty_expire_centisecs 3000
   vm.dirty_ratio 40
   vm.dirty_writeback_centisecs 500
   vm.dirtytime_expire_seconds 43200
   vm.extrfrag_threshold 500
   vm.min_unmapped_ratio 1
   vm.nr_hugepages 0
   vm.nr_hugepages_mempolicy 0
   vm.nr_overcommit_hugepages 0
   vm.swappiness 10
   vm.watermark_boost_factor 15000
   vm.watermark_scale_factor 10
   vm.zone_reclaim_mode 0
   ```

17. /sys/kernel/mm/transparent_hugepage
   ```
   defrag always defer defer+madvise [madvise] never
   enabled [always] madvise never
   hpage_pmd_size 2097152
   shmem_enabled always within_size advise [never] deny force
   ```

18. /sys/kernel/mm/transparent_hugepage/khugepaged
   ```
   alloc_sleep_millisecs 60000
   defrag 1
   max_ptes_none 511
   max_ptes_shared 256
   ```
Platform Notes (Continued)

max_ptes_swap 64
pages_to_scan 4096
scan_sleep_millisecs 10000

19. OS release
- From /etc/*-release /etc/*-version
- os-release Red Hat Enterprise Linux 9.0 (Plow)
- redhat-release Red Hat Enterprise Linux release 9.0 (Plow)
- system-release Red Hat Enterprise Linux release 9.0 (Plow)

20. Disk information
- SPEC is set to: /home/cpu2017
- Filesystem Type Size Used Avail Use% Mounted on
 /dev/mapper/rhel-home xfs 372G 93G 279G 25% /home

21. /sys/devices/virtual/dmi/id
- Vendor: HPE
- Product: ProLiant DL110 Gen11
- Product Family: ProLiant
- Serial: 7CE244P9LL

22. dmidecode
- Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section.
- The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
- Memory:
 7x Hynix HMCG88MEBRA113N 32 GB 2 rank 4800, configured at 4400
 1x Hynix HMCG88MEBRA115N 32 GB 2 rank 4800, configured at 4400

23. BIOS
- (This section combines info from /sys/devices and dmidecode.)
 - BIOS Vendor: HPE
 - BIOS Version: 1.50
 - BIOS Date: 07/12/2023
 - BIOS Revision: 1.50
 - Firmware Revision: 1.50

Compiler Version Notes

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>502.gcc_r(peak)</td>
</tr>
<tr>
<td>C</td>
<td>500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak) 557.xz_r(base, peak)</td>
</tr>
</tbody>
</table>

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2023.0.0 Build 20221201
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

<table>
<thead>
<tr>
<th>SPECrate®2017_int_base = 272</th>
<th>SPECrate®2017_int_peak = 281</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2017 License: 3</td>
<td>Test Date: Oct-2023</td>
</tr>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Oct-2023</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Dec-2022</td>
</tr>
</tbody>
</table>

Compiler Version Notes (Continued)

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>502.gcc_r(peak)</td>
</tr>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on IA-32, Version 2023.0.0 Build 20221201</td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2022 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak) 557.xz_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2023.0.0 Build 20221201</td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2022 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
<tr>
<td>C++</td>
<td>520.omnetpp_r(base, peak) 523.xalancbmk_r(base, peak) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2023.0.0 Build 20221201</td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2022 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
<tr>
<td>Fortran</td>
<td>548.exchange2_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2023.0.0 Build 20221201</td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2022 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
</tbody>
</table>

Base Compiler Invocation

C benchmarks:
- icx

C++ benchmarks:
- icpx

Fortran benchmarks:
- ifx

Base Portability Flags

- 500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
- 502.gcc_r: -DSPEC_LP64
- 505.mcf_r: -DSPEC_LP64
- 520.omnetpp_r: -DSPEC_LP64

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

SPECrate®2017_int_base = 272
SPECrate®2017_int_peak = 281

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Oct-2023
Hardware Availability: Oct-2023
Software Availability: Dec-2022

Base Portability Flags (Continued)

523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xsapphirerapids -O3 -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/intel64_lin
-lqkmalloc

C++ benchmarks:
-w -std=c++14 -m64 -Wl,-z,muldefs -xsapphirerapids -O3 -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/intel64_lin
-lqkmalloc

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xsapphirerapids -O3 -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/intel64_lin
-lqkmalloc

Peak Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifx
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen11
(2.00 GHz, Intel Xeon Gold 6433N)

SPECrater®2017_int_base = 272
SPECrater®2017_int_peak = 281

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -w -std=c11 -m64 -Wl,-z,muldefs
-fprofile-generate(pass 1)
-fprofile-use=default.profdata(pass 2) -xCORE-AVX2(pass 1)
-flto -Ofast -xCORE-AVX512 -ffast-math -mfpmath=sse
-funroll-loops -qopt-mem-layout-trans=4
-fno-strict-overflow
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/intel64_lin
-lqkmalloc

502.gcc_r: -m32
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/ia32_lin
-std=gnu89 -Wl,-z,muldefs -fprofile-generate(pass 1)
-fprofile-use=default.profdata(pass 2) -xCORE-AVX2(pass 1)
-flto -Ofast -xCORE-AVX512 -ffast-math -mfpmath=sse
-funroll-loops -qopt-mem-layout-trans=4
-L/usr/local/jemalloc32-5.0.1/lib -ljemalloc

505.mcf_r: basepeak = yes

525.x264_r: -w -std=c11 -m64 -Wl,-z,muldefs -xsapphirerapids -Ofast
-ffast-math -flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/intel/compiler/2023.0.0/linux/compiler/lib/intel64_lin
-lqkmalloc

557.xz_r: basepeak = yes

C++ benchmarks:

(Continued on next page)
Peak Optimization Flags (Continued)

- 520.omnetpp_r: basepeak = yes
- 523.xalancbmk_r: basepeak = yes
- 531.deepsjeng_r: basepeak = yes
- 541.leela_r: basepeak = yes

Fortran benchmarks:
- 548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-SPR-rev2.4.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-SPR-rev2.4.xml