

Standard Performance Evaluation Corporation (SPEC®)

The SERT® Suite
Design Document
2.0.x
7001 Heritage Village Plaza, Suite 225
Gainesville, VA 20155,
USA

The SERT Suite - Design Document

23 February 2022 2 of 39 Copyright © 1988-2022 SPEC

Table of Contents

1. Introduction ... 5

1.1. About SPEC ...5
1.1.1. SPEC Membership .. 5

1.1. The SPECpower Committee ...5

1.2. The SERT 2.0 Suite Overview ...6
1.2.1. Feedback and Support Mechanism ... 6

1.1. Trademark and Copyright Notice ...6

2. The SERT Suite Architecture .. 7

2.1. Environment Overview ...7

2.2. SERT Suite ..8

2.3. Workload ...9

2.4. Worklet Execution Phases ...9

3. Power and Temperature Measurements ... 11

3.1. Environmental Conditions ... 11

3.2. Temperature Sensor Specifications ... 11

3.3. Power Analyzer Requirements .. 11

3.4. SPEC PTDaemon® ... 12

3.5. Supported and Compliant Devices ... 12

3.6. Power Analyzer Setup ... 12
3.6.1. 3-Phase Measurements ... 12

3.7. DC Line Voltage .. 12

4. Graphical User Interface ... 13

5. SERT 2 Metric, Reports, Validation, and Logging ... 16

5.1. The SERT 2 Metric ... 16
5.1.1. Workload Efficiency Calculation .. 16
5.1.2. SERT 2 Metric Calculation .. 16

5.2. Reference Platform ... 17

5.3. Reporting and Output Files ... 17
5.3.1. Results Output ... 17
5.3.2. Report Formats .. 17
5.3.3. Sample Report Output ... 18

5.4. Validation / Verification .. 19

5.5. Logging ... 19

The SERT Suite - Design Document

23 February 2022 3 of 39 Copyright © 1988-2022 SPEC

6. Worklet Design Guidelines ... 20

6.1. CPU Worklets ... 20

6.2. Memory Worklets .. 20

6.3. IO Worklets .. 21
6.3.1. Network IO Worklets ... 21
6.3.2. Storage IO Worklets ... 21

6.4. Idle Worklet ... 21

7. Worklet Details .. 22

7.1. CPU Worklet: Compress .. 23
7.1.1. General Description ... 23
7.1.2. Sequence Execution Methods ... 23
7.1.3. Metric .. 23
7.1.4. Required Initialization .. 23
7.1.5. Configuration Parameters .. 23
7.1.6. Transaction Code ... 23

7.2. CPU Worklet: CryptoAES ... 24
7.2.1. General Description ... 24
7.2.2. Sequence Execution Methods ... 24
7.2.3. Metric .. 24
7.2.4. Required Initialization .. 24
7.2.5. Configuration Parameters .. 24
7.2.6. Transaction Code ... 24

7.3. CPU Worklet: LU ... 25
7.3.1. General Description ... 25
7.3.2. Sequence Execution Methods ... 25
7.3.3. Metric .. 25
7.3.4. Required Initialization .. 25
7.3.5. Configuration Parameters .. 25
7.3.6. Transaction Code ... 25

7.4. CPU Worklet: SHA256 ... 26
7.4.1. General Description ... 26
7.4.2. Sequence Execution Methods ... 26
7.4.3. Metric .. 26
7.4.4. Required Initialization .. 26
7.4.5. Configuration Parameters .. 26
7.4.6. Transaction Code ... 26

7.5. CPU Worklet: SOR ... 27
7.5.1. General Description ... 27
7.5.2. Sequence Execution Methods ... 27
7.5.3. Metric .. 27
7.5.4. Required Initialization .. 27
7.5.5. Configuration Parameters .. 27
7.5.6. Transaction Code ... 27

7.6. CPU Worklet: SORT ... 28
7.6.1. General Description ... 28
7.6.2. Sequence Execution Methods ... 28

The SERT Suite - Design Document

23 February 2022 4 of 39 Copyright © 1988-2022 SPEC

7.6.3. Metric .. 28
7.6.4. Required Initialization .. 28
7.6.5. Configuration Parameters .. 28
7.6.6. Transaction Code ... 28

7.8. CPU Worklet: SSJ .. 29
7.8.1. General Description ... 29
7.8.2. Sequence Execution Methods ... 29
7.8.3. Metric .. 29
7.8.4. Required Initialization .. 29
7.8.5. Configuration Parameters .. 29
7.8.6. New Order Transaction .. 29
7.8.7. Payment Transaction ... 30
7.8.8. Order Status Transaction ... 31
7.8.9. Delivery Transaction .. 31
7.8.10. Stock Level Transaction ... 32
7.8.11. Customer Report Transaction .. 32

7.9. Memory Worklet: Flood3 .. 33
7.9.1. General Description ... 33
7.9.2. Sequence Execution Methods ... 33
7.9.3. Metric .. 34
7.9.4. Required Initialization .. 34
7.9.5. Configuration Parameters .. 34
7.9.6. Transaction Code ... 35

7.10. Memory Worklet: Capacity3 .. 36
7.10.1. General Description ... 36
7.10.2. Sequence Execution Methods ... 36
7.10.3. Metric .. 36
7.10.4. Required Initialization .. 36
7.10.5. Configuration Parameters .. 36
7.10.6. Transaction Code ... 37

7.11. Storage IO Workload ... 38
7.11.1. General Description ... 38
7.11.2. Sequence Execution Methods ... 38
7.11.3. Metric .. 38
7.11.4. Required Initialization .. 38
7.11.5. Configuration Parameters .. 38
7.11.6. Transaction – Code 1 - RandomRead ... 39
7.11.7. Transaction – Code 1 - RandomWrite .. 39
7.11.8. Transaction – Code 2 – SequentialRead .. 39
7.11.9. Transaction – Code 2 – SequentialWrite ... 39

This document version: https://www.spec.org/sert2/SERT-designdocument-20220223.pdf
Latest SERT 2.x.x version: https://www.spec.org/sert2/SERT-designdocument.pdf
Previous version: https://www.spec.org/sert2/SERT-designdocument-20210331.pdf

https://www.spec.org/sert2/SERT-designdocument-20220223.pdf
https://www.spec.org/sert2/SERT-designdocument.pdf
https://www.spec.org/sert2/SERT-designdocument-20210331.pdf

The SERT Suite - Design Document

23 February 2022 5 of 39 Copyright © 1988-2022 SPEC

1. Introduction
The SERT suite was created by the Standard Performance Evaluation Corporation, the world’s leading organization
for benchmarking expertise. The SPECpower Committee designed, implemented, and delivered the SERT suite, a
next-generation standard for measuring and evaluating the energy efficiency of servers. The SERT suite was created
with the input from leaders of various global energy-efficiency programs and their stakeholders in order to
accommodate for their regional program requirements.

1.1. About SPEC

SPEC was formed by the industry in 1988 to establish industry standards for measuring compute performance. SPEC
has since become the largest and most influential benchmark consortium world-wide. Its mission is to ensure that
the marketplace has a fair and useful set of metrics to analyze the newest generation of IT equipment.

SPEC has a long history of designing, developing, and releasing industry-standard computer system performance
benchmarks in a range of industry segments, plus peer-reviewing the results of benchmark runs. Performance
benchmarking and the necessary work to develop and release new benchmarks can lead to disagreements among
participants. Therefore, SPEC has developed an operating philosophy and range of normative behaviors that
encourage cooperation and fairness among diverse and competitive organizations:

• Decisions are reached by consensus. Motions require a qualified majority to carry.

• Decisions are based on reality. Experimental results carry more weight than opinions. Data and
demonstration overrule assertion.

• Tools and benchmarks should be architecture-neutral and portable.

The SPEC community has developed more than 30 industry-standard benchmarks for system performance
evaluation in a variety of application areas and has provided thousands of benchmark licenses to companies,
resource centers, and educational institutions globally. Organizations using these benchmarks have published more
than 50,000 peer-reviewed performance reports on SPEC’s website (https://www.spec.org/results.html).

1.1.1. SPEC Membership

SPEC membership is open to any interested company or entity. The members and associates of SPEC’s Open System
Group (OSG) are entitled to licensed copies of all released OSG benchmarks and tools as well as unlimited publication
of results on SPEC's public website. An initiation fee and annual fees are due for members. Nonprofit organizations
and educational institutions have a reduced annual fee structure. Further details on membership information can
be found on https://www.spec.org/osg/joining.html or requested at info@spec.org. Also, a current list of SPEC
members can be found here: https://www.spec.org/spec/membership.html.

1.1. The SPECpower Committee

The increasing demand for energy-efficient IT equipment has resulted in the need for power and performance
benchmarks. In response, the SPEC community established the SPECpower Committee, an initiative to augment
existing or create new industry-standard benchmarks and tools with a power/energy measurement. Leading
engineers and scientists, representing a diverse and competitive set of companies, in the fields of benchmark
development and energy efficiency made a commitment to tackle this task. The development of the first industry-
standard benchmark that measures the power and performance characteristics of server-class compute equipment
began on January 26, 2006.

In December of 2007, SPECpower_ssj2008 was released, which exercises the CPUs, caches, memory hierarchy, and
the scalability of shared memory processors on multiple load-levels. The benchmark runs on a wide variety of
operating systems and hardware architectures. In version 1.10, which was released on April 15, 2009, SPEC
augmented SPECpower_ssj2008 with multi-node support (e.g., blade-support). Several enhancements and code
changes to all benchmark components, documentation updates, and run and reporting rules enhancements were
included in version 1.11, released September 13, 2011 and version 1.12, released March 30, 2012.

http://www.spec.org/results.html
http://www.spec.org/osg/joining.html
mailto:info@spec.org
http://www.spec.org/spec/membership.html

The SERT Suite - Design Document

23 February 2022 6 of 39 Copyright © 1988-2022 SPEC

The work on the SERT suite started around 2009 with the ground-breaking design of the ChauffeurTM framework
followed with the design and implementation of the workload, automated hardware and software discovery, and
GUI. After a series of successful Alpha and Beta test phase, the SERT suite was released on 26. February 2013. The
U.S. Environmental Protection Agency (EPA) adopted the SERT suite for their ENERGY STAR for Server Certification
program 2 month later on March 15, 2013. The SPECpower Committee released four upgrades over the years, in
order to further enhance the usability of the SERT suite, and to increase its platform support

For version 2.0, one of the main focuses was the reduction of the SERT runtime and improvements on the automated
hardware and software discovery, in order to save the user testing time and costs. The support of additional power
analyzers and interfaces was adopted as well in order to provide a wider choice for users. Also, some major
improvements of the memory subsystem worklets, for more accurate characterization of memory, were
implemented. Simultaneously to these efforts, the SPECpower Committee in collaboration with the more academic-
focused SPEC Power Research Group, conducted large scale experiments in order to determine the server efficiency
metric for SERT 2.0 which enabled its release on March 14, 2017.

1.2. The SERT 2.0 Suite Overview

The SERT suite is providing a first order of approximation of server efficiency across a broad range of application
environments. It is designed to be economical and easier to use by utilizing a comprehensive graphical user interface
(GUI) and predetermined sets of tuning parameters. The SERT suite has been implemented and tested for a variety
of 64-bit processors, operating systems, and JVMs. It is scalable and tested up to a maximum of 8 processor sockets
and a maximum of 64 nodes. The server under test (SUT) may be a single stand-alone server or a multi-node set of
servers. A multi-node SUT will consist of server nodes that cannot run independently of shared infrastructure such
as a backplane, power-supplies, fans, or other elements. These shared infrastructure systems are commonly known
as “blade servers” or “multi-node servers”. Only identical (homogenous) servers are supported in a multi-node SUT
configuration.

The main body of code is in written in Java in order to lower the burden of cross-platform support. The framework
is designed to accommodate other program languages as well. A series of different workload characteristics are
implemented to demonstrate the effectiveness of different server sizes and configurations. The workload also
utilized SPEC’s concept of multiple load levels and details can be found in section 7. Regulatory programs are
designed to foster continuous improvement, with thresholds for success rising as the industry progresses. The SERT
suite is designed to match this paradigm by implementing a quick adoption process of new computing technologies.
This process is described in SERT’s Run and Reporting Rules and the current list of supported platforms can be
located here: https://www.spec.org/sert2/SERT-JVM_Options-2.0.html.

The right balance between high repeatability of the results, high sub-system coverage, and low resource allocation
is desirable and resulted in a run time of around 2 ½ hours. The results output, including the SERT metric, are
generated in both machine- and human-readable forms, enabling automatic submission to government-sponsored
certification programs as well as both summary and detail reports for use by potential customers.

1.2.1. Feedback and Support Mechanism

Since the beginning of the SERT Beta phase in September 2011, the technical support is being conducted by
volunteers from our member institutions. In general, the user sent a request via the SERT Support Request Form
(https://www.spec.org/sert/feedback/issuereport.html) or discusses an items via the SERT Discussion Forum
(https://www.spec.org/forums/index.php). Feedback is addressed on a first-in, first-out bases and since the official
release of the SERT in February 2013 all requests have been successfully addressed.

1.1. Trademark and Copyright Notice

SPEC, the SPEC logo, and the names PTDaemon, SERT, and Chauffeur are registered trademarks of the Standard
Performance Evaluation Corporation (SPEC). Additional product and service names mentioned herein may be the
trademarks of their respective owners. Copyright © 1988-2021 Standard Performance Evaluation Corporation
(SPEC). All rights reserved.

http://www.spec.org/sert2/SERT-JVM_Options-2.0.html
https://www.spec.org/sert/feedback/issuereport.html
https://www.spec.org/forums/index.php

The SERT Suite - Design Document

23 February 2022 7 of 39 Copyright © 1988-2022 SPEC

2. The SERT Suite Architecture

2.1. Environment Overview

The SERT suite is composed of multiple software components and shares design philosophies and elements from
SPECpower_ssj2008 in its overall architecture.

For the most basic SERT measurement setup the following is required:

• System under Test (HW) – the actual system for which the measurements are being taken. The controller
and SUT are connected to each other via a TCP/IP connection.

• Controller (HW, e.g. server, PC, laptop) – the system to which the power and temperature sensor are
connected. Multi-Controller environments are supported.

• Power analyzer (HW) – connected to the Controller and used to measure the power consumption of the
SUT. Multiple Power Analyzer environments are supported.

• Temperature sensor (HW) – connected to the Controller and used to measure the ambient temperature
where the SUT is located.

• The SPEC PTDaemon (SW) – connects to the power analyzer and temperature sensor and gathers their
readings while the suite of workloads executes. All instances of the PTDaemon (each must be the same
version) must run on the Controller, each listening on a different port.

• The Reporter (SW) – summarizes the environmental, power, and performance data after a run is complete
and compiles it into an easy to read format.

• The GUI (SW) – eases configuring and executing the SERT suite.

Chauffeur (SERT test harness) handles the logistical side of measuring and recording power data along with
controlling the software installed on the SUT and Controller. It is responsible for the initialization of the following
JVMs:

• The Client JVM – executes the workload.

• The Host JVM – starts all Client JVMs on one SUT.

• The Director – instructs the Host JVM to start the workload.

The basic system overview in Figure 2: SERT Components shows these components in relationship to each other.

Storage
Workload

Workload

SPEC PTDaemon

SPEC PTDaemon

Controller System Under Test

Temperature Sensor

Power Analyzer

Worklet A

Worklet B

Worklet C

PSU

PSU

NetworkChauffeur

CPU CPU

Memory

Reporter

GUI

Figure 1: SERT System Diagram

The SERT Suite - Design Document

23 February 2022 8 of 39 Copyright © 1988-2022 SPEC

Figure 2: SERT Components

2.2. SERT Suite

The SERT Suite is composed of several logical elements including:

User

• A User is a representation of an external agent that can initiate work (e.g. a human being).

• Each User may maintain identifying information (e.g. each User represents a Warehouse).

• Each User may maintain temporary state information that persists from one transaction to another.
Worklet (Compress, CryptoAES, LU, SHA256, SOR, SORT, Flood3, Capacity3, SSJ, Idle)

• A Worklet defines a set of transactions that can be executed by a particular type of User.
Scenario

• A Scenario is a group of one or more Transactions which are executed in sequence by a particular User.

• When a worklet is running a load level, each scenario is scheduled to being execution at a specific time. If
that time is in the future, the User will execute no transactions until the scheduled time arrives.

• Each transaction in a scenario is submitted to a JVM-wide thread pool for execution.
Interval

• Each Interval includes pre-measurement, recording, and post-measurement periods.

• Transactions are executed throughout the entire interval, but results are only recorded during the recording
period.

• Power consumption is recorded only during the recording period.
Sequence (A sequence of related intervals)

• The intervals in a sequence may be executed identically (e.g. during calibration).

• The intervals in a sequence may execute at different load levels (e.g. 100%, 80%, 60%, 40%, and 20% of the
calibrated throughput).

• The intervals in a sequence may run with different configuration parameters (e.g. floot3 runs Flood_Full
and Flood_Half to utilize all of system memory and half of system memory, respectively).

Phase

• A phase of execution: warm-up, calibration, or measurement

• Each phase consists of a sequence of intervals.

• Chauffeur supports multiple sequences in the measurement phase, but SERT always runs a single sequence
in each phase.

Workload (CPU, Memory, Storage, Idle)

• A workload is a group of worklets designed to stress some aspect of the SUT.

• The worklets in each workload run one at a time in a defined order.

Reports

Reports

SPEC PTDaemon

SPEC PTDaemon

Director

JVM

Reporter

Reports

System under Test

serthost.bat/.sh

:

:

Host JVM

Client JVM 1

Client JVM 2

Client JVM N

Controller

runpower.bat/.sh

runtemp.bat/.sh

director.bat/.sh config-all.xml

The SERT Suite - Design Document

23 February 2022 9 of 39 Copyright © 1988-2022 SPEC

2.3. Workload

The design goal for the SERT suite is to include all major aspects of server architecture, thus avoiding any preference
for specific architectural features which might make a server look good under one workload and show disadvantages
with another workload. The SERT workloads take advantage of different server capabilities by using various load
patterns, which are intended to stress all major components of a server uniformly.

2.4. Worklet Execution Phases

The SERT test suite consists of several workloads which are designed to stress the various components of the system
under test (SUT): CPU, memory, and storage. Each workload includes one or more worklets which execute specific
code sequences to focus on one of these system components. The overall design structure of the SERT is shown in
Figure 3: SERT Suite Components.

Worklets are run one at a time. Most worklets consist of a warm-up phase, a calibration phase, and a measurement
phase; some worklets do not include warm-up or calibration. Each of these phases consists of a sequence of one or
more intervals. Each interval includes a pre-measurement, recording, and post-measurement period. Score
calculations are based on the number of transactions and the power consumed during the recording period only. All
of the worklets other than Flood3 use fixed time periods for the pre-measurement, recording, and post-
measurement periods. Flood3 measures memory bandwidth while running a minimum number of iterations during
each period. The pre-measurement period allows the worklet to reach steady state before recording begins. The
pre- and post-measurement periods also ensure that in multi-client and multi-host runs, all clients are executing
transactions concurrently during the recording period, even if there are slight discrepancies in the time that the
recording period begins and ends. Intervals are separated by short delays to summarize results and allow new power
analyzer ranges to take effect.

suite

worklet

workload

worklet

…

worklet

workload

worklet

……

Figure 3: SERT Suite Components

The SERT Suite - Design Document

23 February 2022 10 of 39 Copyright © 1988-2022 SPEC

Figure 4: Graduated Measurement Execution

Most worklets (with the exception of the memory and idle worklets) run as shown in Figure 4: Graduated
Measurement Execution. Each of these worklets begins with a warm-up phase which runs transactions for a short
period of time to allow the worklet execution to stabilize. Throughput during the warm-up interval may vary due to
factors such as JIT compilation, memory allocation, and garbage collection, and system caches adjusting to the new
load. After warm-up, a sequence of calibration intervals is run to identify the maximum rate that transactions can
be executed for this worklet. Two calibration intervals are used, and the calibrated throughput is the average for
these two intervals. After the calibrated throughput is found, SERT runs a series of intervals where the worklet is
throttled back to run at some percentage of the maximum throughput. The series of load levels varies by worklet,
as defined in Section 7.

Figure 5: Fixed Iteration Execution

worklet

recording

Pre

x iterations

Measurement

y iterations

Post

z iterations

interval

W = Warm-up (30 sec)

S = Sleep (10 sec)

PR = Pre measurement (15 sec)

PO = Post measurement (15 sec)

Cal. N = Calibration Interval N (120 sec)

nn% = Measurement Interval (120 Sec)

Post = Post measurement (z iterations) (optional)

Pre = Pre measurement (x iterations) (optional)

Measurement = Measurement (y iterations)

Worklet execution time = not fixed, depending on system capacity

PR

15

Cal. 1

120

PO

15

S

10

meas.

interval

S

10

W

30

seq.

Cal. 2

120

PO

15

S

10

meas.

interval

PR

15

PR

15

100%

120

PO

15

S

10

meas.

interval

PR

15

75%

120

PO

15

S

10

meas.

interval

PR

15

50%

120

PO

15

S

10

meas.

interval

no delay sequence graduated measurement sequence

worklet

PR

15

25%

120

PO

15

meas.

interval

The SERT Suite - Design Document

23 February 2022 11 of 39 Copyright © 1988-2022 SPEC

3. Power and Temperature Measurements
The SERT suite provides the ability to automatically gather measurement data from accepted power analyzers and
temperature sensors and integrate that data into the SERT metric. The analyzers and sensors must be supported by
the measurement framework, and must be compliant with the specifications in this section. The SERT suite is
designed for environments that have a supply voltage tolerance of ± 5%.

3.1. Environmental Conditions

Power measurements need to be taken in an environment representative of the majority of usage environments.
The intent is to discourage extreme environments that may artificially impact power consumption or performance
of the server, before and during the SERT run.

The following environmental conditions need to be met:

• Ambient temperature lower limit: 20°C

• Ambient temperature upper limit: within documented operating specification of the SUT

• Elevation and Humidity: within documented operating specification of the SUT

• Overtly directing air flow in the vicinity of the measured equipment in a way that would be inconsistent
with normal data center practices is not allowed.

3.2. Temperature Sensor Specifications

Temperature must be measured no more than 50mm in front of (upwind of) the main airflow inlet of the SUT. To
ensure comparability and repeatability of temperature measurements, SPEC requires the following attributes for
the temperature measurement device used during the SERT run:

• Logging - The sensor must have an interface that allows its measurements to be read by the SERT harness. The
reading rate supported by the sensor must be at least four samples per minute.

• Accuracy - Measurements must be reported by the sensor with an overall accuracy of +/- 0.5 degrees Celsius or
better for the ranges measured during the SERT run.

3.3. Power Analyzer Requirements

To ensure comparability and repeatability of power measurements, the following attributes for the power
measurement device are required for the SERT. Please note that a power analyzer may meet these requirements
when used in some power ranges, but not in others, due to the dynamic nature of power analyzer Accuracy and
Crest Factor. The usage of power analyzer’s auto-ranging function is not permitted.

• Measurements - The analyzer must report true RMS power (watts) and at least two of the following
measurement units: voltage, amperes, and power factor.

• Accuracy - Measurements must be reported by the analyzer with an overall uncertainty of 1% or better for the
ranges measured during the benchmark run. Overall uncertainty means the sum of all specified analyzer
uncertainties for the measurements made during the benchmark run.

• Calibration - The analyzer must be able to be calibrated by a standard traceable to NIST (U.S.A.) (http://nist.gov)
or a counterpart national metrology institute in other countries. The analyzer must have been calibrated within
the past year.

• Crest Factor - The analyzer must provide a current crest factor of a minimum value of 3. For analyzers which do
not specify the crest factor, the analyzer must be capable of measuring an amperage spike of at least three
times the maximum amperage measured during any one-second sample of the benchmark run.

• Logging - The analyzer must have an interface that allows its measurements to be read by the SPEC PTDaemon.
The reading rate supported by the analyzer must be at least one set of measurements per second, where set is
defined as watts and at least two of the following readings: voltage, amperes, and power factor. The data

http://nist.gov/

The SERT Suite - Design Document

23 February 2022 12 of 39 Copyright © 1988-2022 SPEC

averaging interval of the analyzer must be either one (preferred) or two times the reading interval. "Data
averaging interval" is defined as the time period over which all samples captured by the high-speed sampling
electronics of the analyzer are averaged to provide the measurement set.

Examples:

An analyzer with a vendor-specified accuracy of +/- 0.5% of reading +/- 4 digits, used in a test with a maximum power
value of 200W, would have "overall" accuracy of (((0.5%*200W)+0.4W)=1.4W/200W) or 0.7% at 200W.

An analyzer with a wattage range 20-400W, with a vendor-specified accuracy of +/- 0.25% of range +/- 4 digits, used
in a test with a maximum power value of 200W, would have "overall" accuracy of
(((0.25%*400W)+0.4W)=1.4W/200W) or 0.7% at 200W.

3.4. SPEC PTDaemon®

SPEC (Power & Temperature Daemon) PTDaemon is used by the SERT to offload the work of controlling a power
analyzer or temperature sensor during measurement intervals to a system other than the SUT. It hides the details
of different power analyzer interface protocols and behaviors from the SERT software, presenting a common TCP-
IP-based interface that can be readily integrated into different benchmark harnesses.

The SERT harness connects to PTDaemon by opening a TCP port and using the simple commands. For larger
configurations, multiple IP/port combinations can be used to control multiple devices.

PTDaemon can connect to multiple analyzer and sensor types, via protocols and interfaces specific to each device
type. The device type is specified by a parameter passed locally on the command line on initial invocation of the
daemon.

The communication protocol between the SERT and PTDaemon does not change regardless of device type. This
allows the SERT to be developed independently of the device types to be supported.

3.5. Supported and Compliant Devices

The SERT suite utilizes SPEC's accepted measurement devices list and SPEC PTDaemon update process. See Device
List (https://www.spec.org/power_ssj2008/docs/device-list.html) for a list of currently supported (by the SPEC
PTDaemon) and compliant (in specifications) power analyzers and temperature sensors.

The process to add software support for a power analyzer or temperature sensor to the infrastructure can be found
on the Power Analyzer Acceptance Process page (https://www.spec.org/power/docs/SPEC-
Power_Analyzer_Acceptance_Process.pdf).

3.6. Power Analyzer Setup

The power analyzer must be located between the AC Line Voltage Source and the SUT. No other active components
are allowed between the AC Line Voltage Source and the SUT. Power analyzer configuration settings that are set by
the SPEC PTDaemon must not be manually overridden.

3.6.1. 3-Phase Measurements

A 3-phase analyzer must be used for 3-phase measurements.

3.7. DC Line Voltage

The SPECpower Committee is in favor of including DC support if new resources from companies whose focus is DC
computing become available to the SPECpower Committee to address the development and support opportunity.

http://www.spec.org/power_ssj2008/docs/device-list.html
http://www.spec.org/power/docs/SPEC-Power_Analyzer_Acceptance_Process.pdf
http://www.spec.org/power/docs/SPEC-Power_Analyzer_Acceptance_Process.pdf

The SERT Suite - Design Document

23 February 2022 13 of 39 Copyright © 1988-2022 SPEC

4. Graphical User Interface
A graphical user interface (GUI) is provided to facilitate configuration and setup of test runs, to allow real-time
monitoring of test runs, and to review the results. The SERT GUI leads the user through the steps of configuring the
SUT and initiating a test sequence. These steps include detecting and customizing the hardware and software
configurations, selecting the test type, and displaying the results.

The SERT GUI includes several features to enable SERT testing with minimal training, thereby enhancing the accuracy
of results. Some of the features include:

▪ Easy Navigation with Tabbed Screens via “Navigation Menu” and/or “Back/Next” buttons

▪ In-line usage guidance and help

▪ SUT Configuration Discovery (Detect function) automatically detects configuration information and
populates many fields with SUT and Controller hardware and software details.

▪ The GUI displays test environment information, allowing the modification and saving of updated fields.

▪ For use in reports: e.g. Vendor Information, Platform Configuration, Run-Time parameters, etc.

The SERT Suite - Design Document

23 February 2022 14 of 39 Copyright © 1988-2022 SPEC

▪ Test Run information files can be stored for subsequent reuse, thus saving time when testing
multiple identical platforms. For running on multiple platforms that are similar to each other, the
saved information for one platform can be loaded and quickly modified for the other platform.

▪ The GUI allows setting up the PTDaemon Configuration, and testing of the connection to a Power Analyzer
or Temperature Sensor (as shown on the tabs in the screenshot below).

▪ Support for all PTDaemon supported Power Analyzers and Temperature Sensors

▪ Access to all PTDaemon debugging and configuration options

▪ Establish and test a connection with PTDaemon supported devices

▪ Progress, warnings, and errors are displayed in Launch Test panel output

▪ The GUI provides the capability to set up the Test Suite and Configuration.

▪ Selects entire test suite for an official test run

▪ Selective execution of a subset of workloads and worklets for a quick validation of test setup or
experimentation

▪ Configures JVM options and number of clients

▪ Sets up one or multiple storage path(s) pointing to the physical storage device(s)

The SERT Suite - Design Document

23 February 2022 15 of 39 Copyright © 1988-2022 SPEC

▪ Displays the Test Execution and Progress

▪ Validates storage path parameters and storage device space remaining

▪ Start measurements

▪ Displays progress, warnings, and errors

▪ PTDaemon messages displayed in separate tabs for clarity

▪ Displays Results and provides access to the final report

▪ Save, View, and Recall archived reports

The SERT Suite - Design Document

23 February 2022 16 of 39 Copyright © 1988-2022 SPEC

5. SERT 2 Metric, Reports, Validation, and Logging

5.1. The SERT 2 Metric

All SERT worklets, except Idle run at multiple load levels. For each of those load levels, energy efficiency is calculated
separately. We define per load level energy efficiency Effload as follows (Eq 1):

𝐸𝑓𝑓𝑙𝑜𝑎𝑑 =
Normalized Performance

Power Consumption
 (1)

Normalized performance is normalized throughput for most worklets, with memory worklets being a notable
exception. Power consumption in this context is the average measured power consumption for each load level. As
such, the per load level energy efficiency score represents the amount of (normalized) transactions that were
executed per unit of energy (Joule).

The worklet efficiency score Effworklet is calculated using the geometric mean of the separate load level scores (Eq. 2).
The geometric mean has been chosen in favor of the arithmetic mean or sum. The major difference between the
geometric mean and arithmetic mean is that the arithmetic mean favors load levels with higher efficiency scores.
Traditionally, higher load levels also feature higher efficiency scores on most systems. As a result, the arithmetic
mean usually favors the results of high load levels. A change in energy efficiency at a higher load level has a greater
impact on the final score than it would at a lower load level. The geometric mean, on the other hand, treats relative
changes in efficiency equally at each load level. Finally, the resulting geometric mean is multiplied with a factor of
1000. This is a cosmetic factor that has been chosen in order to move the resulting score into a number range that
is easier to read for a human reader.

𝐸𝑓𝑓𝑤𝑜𝑟𝑘𝑙𝑒𝑡 = exp (
1

𝑛
× ∑ 𝑙𝑛(𝐸𝑓𝑓𝑙𝑜𝑎𝑑𝑖

)𝑛
𝑖=1) × 1000 (2)

n represents the number of load levels per worklet and Effload_i the energy efficiency for load level i.

5.1.1. Workload Efficiency Calculation

Workload efficiency Effworkload is calculated by aggregating the efficiency scores of all worklets within the workload
using the geometric mean (Eq. 3). The worklet efficiency scores being aggregated are the results of the score
calculation in Eq. 2 in Section 5.1.

𝐸𝑓𝑓𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = exp (
1

𝑛
× ∑ 𝑙𝑛(𝐸𝑓𝑓𝑤𝑜𝑟𝑘𝑙𝑒𝑡𝑖

)𝑛
𝑖=1) (3)

n represents the number of worklets per workload and Effworklet_i is the energy efficiency for each specific worklet.

5.1.2. SERT 2 Metric Calculation

The SERT 2 metric (or SERT 2 Efficiency Score) is the final aggregate of the workload scores. It too, is derived using
the geometric mean. In contrast to the other mean aggregates, the SERT 2 metric does not consider all workloads
equally. Instead, it uses a weighted geometric mean, putting a different focus on each of the workload scores. The
particular workload weights are as follows:

• CPU weight: 65% (High)

• Memory weight: 30% (Medium)

• Storage weight: 5% (Low)

The weights have been decided by expert groups and represent a realistic weighting of the importance of the
different workloads when comparing SERT to real world operation workloads. Note, again, that the workloads do
not purely exercise the hardware component after which they are named. The CPU workloads also exercise some
memory, the Memory workloads perform some work on the CPU, etc. This means that the weighted CPU workloads

The SERT Suite - Design Document

23 February 2022 17 of 39 Copyright © 1988-2022 SPEC

(with their weight of 65%) already include some memory power and memory energy efficiency components. The
weights have been created with this in mind. Consequently, the SERT 2 metric is calculated as follows (Eq. 4):

SERT 2 Efficiency Score = exp(0.65 * ln(EffCPU) + 0.3 * ln(EffMemory) + 0.05 * ln(EffStorage)) (4)

For further details on impact of server configuration on the SERT metric, see https://www.spec.org/sert2/SERT-
metric.pdf.

5.2. Reference Platform

In order to get performance values in the same order of magnitude from all worklets, the individual worklet
performance scores are normalized relative to an arbitrarily selected baseline in the 2.0 release of the SERT.

The baseline results have been derived from 6 SERT runs (3 per software stack) on this reference platform:

• 1-socket rack server (1U)

• 1 x Intel(R) Xeon(R) CPU E3-1240 @ 3.30GHz

• 2 x 4GB 2Rx8 PC3 -10600E DIMMs

• 1 x SATA 160GB 7.2k rpm 3.5” HDD connected to an onboard SATA controller

• Software Stack 1: RedHat Enterprise Linux 6.7 with the Oracle Java SE Runtime Environment (build
1.7.0_80-b15)

• Software Stack 2: Microsoft Windows Server 2008 R2 Datacenter (6.1.7601) with Oracle Java SE Runtime
Environment (build 1.7.0_80-b15)

The reference score for each worklet is defined as the average worklet performance score over all 6 SERT runs on
the configurations described above.

5.3. Reporting and Output Files

The SERT produces multiple reports, and includes code that will ensure the authenticity of the reports.

5.3.1. Results Output

In order to reduce the effort of displaying and/or storing the desired information, the primary report output
(result.xml) is generated in the XML format. This report output contains all the information regarding the SERT run
including all hardware and software configuration of the Controller, the SUT, and the SERT workloads. It includes all
pertinent information about the worklets like JVM affinity, options, and other launch settings, along with the
resulting performance, power and efficiency results.

5.3.2. Report Formats

Four human readable versions of the report are also generated, two in the HTML format (.html) and two in plain text
(.txt).

The “results.html/.txt” reports, contain all pertinent hardware and software information about the test
environment, including the SUT. It also includes the workload efficiency scores, idle power consumption and the
SERT efficiency metric. The “results-details.html/.txt” reports, contain all the information present in the results.html
/ .txt file above, along with detailed breakdown of the performance and power at each load level for all the worklets.
In addition, for each worklet, the run-time parameters like number of CPUs, threads, and command line options are
also captured.

These reports are designed to be viewed on a screen with minimum width of 1280 pixels and contain a subset of
data that is derived from the primary XML output.

https://www.spec.org/sert2/SERT-metric.pdf
https://www.spec.org/sert2/SERT-metric.pdf

The SERT Suite - Design Document

23 February 2022 18 of 39 Copyright © 1988-2022 SPEC

5.3.3. Sample Report Output

The top part of a resuts.html report from a sample system is shown in Figure 6. The left part of the Summary
graphically displays the Workload Efficiency Scores for the three different workloads (CPU, Storage, and Memory) as
well as the SERT 2 Efficiency Score (SERT 2 metric). An overview of the server configuration is shown on the right.
The actual information shown here corresponds to the default information which comes with the SERT installation
package. This is artificial information and doesn’t describe a real system configuration. Figure 7 shows the same
information in a plain text format.

Figure 6: SERT 2.0.3 Report – html format

Figure 7: SERT 2.0.3 Report – txt format

The SERT Suite - Design Document

23 February 2022 19 of 39 Copyright © 1988-2022 SPEC

5.4. Validation / Verification

The SERT software components implement software checks wherever possible to increase information accuracy,
verify user input, monitor run-time data collection, and validate results. The intent is to improve accuracy,
remedying user errors and to prevent invalid data being reported.

When conditions or results do not meet specific criteria, warnings are displayed and error messages will appear in
the SERT reports.

Examples of compliance checking are:

• Java class files in the SERT jar files have not been modified in any way.

• Host and Client JVMs must be 64-bit.

• There are no failures in the transactions that are run as part of the SERT execution.

• Minimum temperature of the SUT must be >= 20 °C.

• <2% error readings recorded by the temperature sensor for entire run, at least one sample per interval

• Non-editable sections of results.xml file must not have been edited.

• Configuration file (default name: “config-all.xml”) is compliant.

• Results must have been obtained using a released version of SERT to be compliant.

• The power analyzer used must be an accepted device per the PTDaemon. The test date must be within 1
year of calibration date. The analyzers used for the test must be the same as described in the test-
environment.xml file.

• <=1% error readings for Power, <=2% for Volt, Ampere, and PF, measured only during recording period

• For each measurement interval on each analyzer, no more than 5% of all samples can have uncertainty >1%,
no more than 1% can have unknown uncertainty, average uncertainty of all samples <= 1%.

• The temperature sensor must be an accepted device per the PTDaemon. The sensors used for the test must
be the same as described in the test-environment.xml file.

• The results must meet the target throughput (within +2%/-4% for 90-100%, within +/- 2% for others).

• Throughput variation between hosts (less or equal 10%)

All the SERT software components will perform validation checks within the domain of their functions, e.g. warnings
of connection problems, log measurement errors and out-of-range conditions, warning the user of missing or
incomplete information and to check the validity of some entered data.

5.5. Logging

If there are any errors or warnings generated while SERT is running, they are saved in the log files. Depending on
where the error/warning occurs, the log files are created on the Controller system or the SUT.

SERT package includes two scripts, one for Windows based systems and another for Linux based systems. The two
script files are below:

-collectlogfiles.bat is intended to be executed on a Microsoft Windows Operating System.

-collectlogfiles.sh is intended to be executed on a Linux, Solaris, or AIX system.

These scripts collect all the log files on the respective system and create a ZIP or tar.gz file respectively in the SERTlog
subdirectory under the main SERT installation directory. The file is name is formatted as:

<hostname>_YYYY-MM-DD_HHMM.<zip/tar.gz> (where YYYY is the year, MM is the month, DD is the day,

and HHMM represents the hours and minutes count.)

The ZIP/tar.gz file can be provided to SPEC for analysis and root cause analysis of the issue.

The SERT Suite - Design Document

23 February 2022 20 of 39 Copyright © 1988-2022 SPEC

6. Worklet Design Guidelines
In order to achieve consistent results from all worklets and a broad coverage of technologies the following guidelines
have been observed:

• Each worklet is adjustable to different performance levels, in particular to some predefined levels between
100% (maximum load) and 0% (idle).

• Each worklet automatically calibrates load levels based on the maximum performance measured by the
tool, independent of user action.

• Precompiled binaries of the test programs are used.

• The worklets scale with the available hardware resources. More resources should result in an appropriate
increase in the performance score; e.g. more processor/memory/disk capacity or additional
processor/memory/disk modules yield a better result in the performance component of the efficiency
rating.

• Each worklet is portable code that follows all SPEC rules for licensing, reuse, and adaptation.

• The worklets are both architecture- and OS-agnostic or accommodate different architectures and/or OSes
by using mildly different code paths.

• The work accomplished by each worklet is clearly identifiable as “important” but is not required to cover
“all important” types of work.

In order to follow these guidelines, most worklets use the concept of batches of discrete work, where each batch
constitutes a transaction. The different load levels will be achieved by scheduling the required number of
transactions, after an initial calibration phase that estimates the 100% performance level.

SERT worklets are not designed to explicitly exercise General Purpose Graphics Processing Units (GPGPUs).

6.1. CPU Worklets

The defining characteristics of the CPU worklets are:

• The worklet requires consistent processor characteristics per simulated “user” regardless of number of
processors, cores, enabled threads, etc.

• At the 100% load level, the performance bottleneck is the processor subsystem.

• The worklet’s performance should increase with more processor resources, including the number of
processors, the number of cores, possibly the number of logical processors, increased frequency, larger
available cache, lower latency, and faster interconnect between CPU sockets.

A more detailed discussion of these worklets follows in the next chapter; generally, the group includes code patterns
used in compression, cryptography, numerical processing, sorting, and the processing of HTML.

6.2. Memory Worklets

The defining characteristics of the memory worklets are:

• The worklet contains consistent memory access characteristics per simulated “user” regardless of size and
number of memory DIMMs.

• At the 100% load level, the performance bottleneck is the memory subsystem.

• The worklet's performance should measure a higher (better) performance score with improved memory
characteristics (e.g. higher bandwidth, lower latency, total memory size), and

• The worklets as a group should reflect a combination of random and sequential reads and writes, and small
and large memory accesses.

As discussed in more detail below, the worklets in this category consist of a memory throughput workload, and a
memory capacity workload.

The SERT Suite - Design Document

23 February 2022 21 of 39 Copyright © 1988-2022 SPEC

6.3. IO Worklets

Disk and Network IO components are a key part of any well-rounded picture of system performance and power.
Worklets in this category are intended to reflect the performance and power usage of modern storage subsystems
with higher performance, larger capacity, and extensive reliability and availability features.

SPEC recognizes that some of the items in the next two sections may not be reasonable or practical to test or
measure in a meaningful way. In those cases, the use of “Configuration Power/Performance Modifier” to
compensate for the extra power draw associated with extra functionality is recommended.

The measurements of power and performance of either optional add-in storage controller cards or server blade
enclosure storage are not in the scope of the SERT.

6.3.1. Network IO Worklets

No Network IO worklet is included in the SERT SUT, and the main reasons for this decision are:

• The cost of testing all reasonable external test system configurations

• Initial measurements show that there are no significant differences in power utilization between 100% and
0% network utilization for today’s technology.

6.3.2. Storage IO Worklets

The SERT does include Storage IO Worklets, whose key characteristics are:

• The worklets reflect consistent IO characteristics per simulated “user” regardless of system size and number
of disks or the installed memory.

• The worklets consist of a combination of random and sequential accesses, reads and writes, and small and
large IOs.

• At the 100% load level, the performance bottleneck is the storage subsystem.

• The worklets should score a higher (better) performance result for higher bandwidth and lower latency.

• The worklets are limited to testing individual internal storage devices only. RAID arrays and external storage
devices are not supported.

The SERT bypasses operating system caches and requires disk and controller caches to be disabled, and therefore
does not measure any performance or power benefits provided by these caches.

6.4. Idle Worklet

During idle measurements, the SUT must be in a state in which it is capable of completing workload transactions.
Therefore, the idle worklet is treated in a manner consistent with all other worklets, with the exception that no
transactions occur during the measurement interval.

The SERT Suite - Design Document

23 February 2022 22 of 39 Copyright © 1988-2022 SPEC

7. Worklet Details
Each worklet supports a variety of configuration parameters for conducting experiments, nonetheless the SERT
suites defines the values of these parameters for compliant runs. The following table lists the current worklets and
their load levels for each of the workloads.

Workload Load Level Worklet Name

CPU

100%, 75%, 50%, 25%

Compress

CryptoAES

LU

SHA256

SOR

SORT

100%, 87.5%, 75%, 62.5%, 50%, 37.5%,25%, 12.5% SSJ

Memory

Full, Half Flood3

Max, Base Capacity3

Storage 100%, 50%

Random

Sequential

Idle idle Idle

The SERT Suite - Design Document

23 February 2022 23 of 39 Copyright © 1988-2022 SPEC

7.1. CPU Worklet: Compress

7.1.1. General Description

The Compress workload implements a transaction that compresses and decompresses data using a modified Lempel-
Ziv-Welch method (LZW). Essentially, it finds common substrings and replaces them with a variable size code. This
is both deterministic and done on the fly. Thus, the decompression procedure needs no input table, but tracks the
way the table was built. The algorithm is based on "A Technique for High Performance Data Compression", Terry A.
Welch, IEEE Computer Vol. 17, No. 6 (June 1984), pp 8-19.

7.1.2. Sequence Execution Methods

Graduated Measurement Sequence

7.1.3. Metric

Transactions Per Second

7.1.4. Required Initialization

A constant size byte array is generated on the fly before for each transaction execution. The contents of the byte
array are randomly generated.

7.1.5. Configuration Parameters

size Size of the input byte array for each transaction execution.
enable-idc Enables/disables memory scaling using input data caching (IDC). Must

be set to false.
iterations Number of executions per transaction
debug-level Value governs the volume of debug messages printed during

execution.
input-generate-iterations Number of random byte array assignment iterations

7.1.6. Transaction Code

Generate random
byte array

start

Generate iterations =1

iterations =1

return
Uncompressed data

Calculate CRC Compress data

Uncompress data

The SERT Suite - Design Document

23 February 2022 24 of 39 Copyright © 1988-2022 SPEC

7.2. CPU Worklet: CryptoAES

7.2.1. General Description

The CryptoAES workload implements a transaction that encrypts and decrypts data using the AES (or DES) block
cipher algorithms. The SERT suite uses AES with CBC and no PKCS5 padding. Encryption and decryption are done
using the Java Cryptographic Extension (JCE) framework, and the Cipher class, in particular.

7.2.2. Sequence Execution Methods

Graduated Measurement Sequence

7.2.3. Metric

Transactions Per Second

7.2.4. Required Initialization

A constant size byte array is generated on the fly before for each transaction execution. The contents of the byte
array are randomly generated.

7.2.5. Configuration Parameters

size Size of the input byte array for each transaction execution
key-generator Key generator algorithm (AES or DESede)
key-size Key size. (128 for AES, 168 for DES)
algorithm Encryption algorithm. (E.g., AES/CBC/NoPadding, AES/CBC/PKCS5Padding,

DESede/CBC/NoPadding, DES/CBC/PKCS5Padding)
Level Number of times to perform the encryption
enable-idc Enables/disables memory scaling using input data caching (IDC). Must be set to false.
iterations Number of executions per transaction
debug-level Value governs the volume of debug messages printed during execution.
input-generate-

iterations
Number of random byte array assignment iterations

7.2.6. Transaction Code

Generate random
byte array

Encrypt data Decrypt data

start

Generate iterations =1

iterations =1

Return
Decrypted data

The SERT Suite - Design Document

23 February 2022 25 of 39 Copyright © 1988-2022 SPEC

7.3. CPU Worklet: LU

7.3.1. General Description

The LU workload implements a transaction that computes the LU factorization of a dense matrix using partial
pivoting. It exercises linear algebra kernels (BLAS) and dense matrix operations. The algorithm is the right-looking
version of LU with rank-1 updates. (Adapted from the NIST-developed SciMark benchmark).

7.3.2. Sequence Execution Methods

Graduated Measurement Sequence

7.3.3. Metric

Transactions Per Second

7.3.4. Required Initialization

A constant size matrix of floating point numbers is generated on the fly before for each transaction execution. The
contents of the matrix are randomly generated.

7.3.5. Configuration Parameters

matrix-dimen Dimension of the input floating point matrix for each transaction execution (NxN)
enable-idc Enables/disables memory scaling using input data caching (IDC). Must be set to false.
iterations Number of executions per transaction
debug-level Value governs the volume of debug messages printed during execution.
input-generate-

iterations
Number of random matrix assignment iterations

7.3.6. Transaction Code

Generate random
floating point array

(NxN)

start

Generate iterations =1

iterations =1

return
Input matrix

Factor

The SERT Suite - Design Document

23 February 2022 26 of 39 Copyright © 1988-2022 SPEC

7.4. CPU Worklet: SHA256

7.4.1. General Description

Hashing and encryption/decryption are two pillars of modern computer security. The SHA-256 workload utilizes
standard Java functions to perform SHA-256 transformations on a byte array. This byte array is perturbed by one
byte for each transaction.

7.4.2. Sequence Execution Methods

Graduated Measurement Sequence

7.4.3. Metric

Transactions Per Second

7.4.4. Required Initialization

None

7.4.5. Configuration Parameters

Debug-level Detailed diagnostic information can be enabled through the debug parameter. Valid values
are 0 = no additional debug information (default), -1 = debug information turned on.

7.4.6. Transaction Code

The SERT Suite - Design Document

23 February 2022 27 of 39 Copyright © 1988-2022 SPEC

7.5. CPU Worklet: SOR

7.5.1. General Description

The Jacobi Successive Over-relaxation (SOR) workload implements a transaction that exercises typical access
patterns in finite difference applications, for example, solving Laplace's equation in 2D with Drichlet boundary
conditions. The algorithm exercises basic "grid averaging" memory patterns, where each A(i,j) is assigned an

average weighting of its four nearest neighbors. Some hand-optimizing is done by aliasing the rows of G[][] to

streamline the array accesses in the update expression. (Adapted from the NIST-developed SciMark benchmark).

7.5.2. Sequence Execution Methods

Graduated Measurement Sequence

7.5.3. Metric

Transactions Per Second

7.5.4. Required Initialization

A constant size grid of floating point numbers is generated on the fly before for each transaction execution. The
contents of the grid are randomly generated.

7.5.5. Configuration Parameters

grid-dimen Dimension of the input floating point grid for each transaction execution (NxN)
enable-idc Enables/disables memory scaling using input data caching (IDC). Must be set to false.
iterations Number of executions per transaction
debug-level Value governs the volume of debug messages printed during execution.
input-generate-

iterations
Number of random grid assignment iterations

7.5.6. Transaction Code

Generate random
floating point array

(NxN)

start

Generate iterations =1

iterations =1

return
Input grid

Execute

The SERT Suite - Design Document

23 February 2022 28 of 39 Copyright © 1988-2022 SPEC

7.6. CPU Worklet: SORT

7.6.1. General Description

Sorting is one of the most common and important operations in computing. The SORT worklet sorts a randomized
64-bit integer array during each transaction. The worklet uses the java.util.Arrays.sort() API to perform the sort --
the implementation of this API may vary in different JVM versions.

7.6.2. Sequence Execution Methods

Graduated Measurement Sequence

7.6.3. Metric

Transactions Per Second

7.6.4. Required Initialization

None

7.6.5. Configuration Parameters

Debug-level Detailed diagnostic information can be enabled through the debug parameter. Valid
values are 0 = no additional debug information (default), -1 = debug information turned
on.

7.6.6. Transaction Code

The SERT Suite - Design Document

23 February 2022 29 of 39 Copyright © 1988-2022 SPEC

7.8. CPU Worklet: SSJ

7.8.1. General Description

SSJ is a simulated Online Transaction Processing (OLTP) workload, and represents a Server Side Java application. It
is based on the SSJ workload in SPECpower_ssj2008, which was based on SPECjbb2005, which was inspired by the
TPC-C specification; however, there are several differences between all of these workloads, and SSJ results are not
comparable to any of these benchmarks.

The SSJ Worklet exercises the CPU (s), caches, and memory of the SUT. The peak throughput level is determined by
maximum number of transaction of the above type the system can perform per second. Once the peak value of the
transactions is determined on a given system, the worklet is run from peak (100%) down to the system idle in a
graduated manner.

The performance of the Worklet depends on the combination of the processor type, number of processors, their
operating speed, and the latency and bandwidth of the memory subsystem of the system.

SSJ includes 6 transactions, with the approximate frequency shown below:

• New Order (30.3%) – a new order is inserted into the system

• Payment (30.3%) – records a customer payment

• Order Status (3.0%) – requests the status of an existing order

• Delivery (3.0%) – processes orders for delivery

• Stock Level (3.0%) – finds recently ordered items with low stock levels

• Customer Report (30.3%) – creates a report of recent activity for a customer

7.8.2. Sequence Execution Methods

Graduated Measurement Sequence

7.8.3. Metric

Transactions Per Second

7.8.4. Required Initialization

Each user represents a warehouse. During initialization, each warehouse is populated with a base set of data,
including customers, initial orders, and order history.

7.8.5. Configuration Parameters

The SSJ workload does not have any supported configuration parameters.

7.8.6. New Order Transaction

The input for a New Order Transaction consists of a random district and customer ID in the user's warehouse, and a
random number of orderlines between 5 and 15.

The SERT Suite - Design Document

23 February 2022 30 of 39 Copyright © 1988-2022 SPEC

7.8.7. Payment Transaction

The input for a Payment Transaction consists of a random district from the user's warehouse, a random customer id
or last name (from either the user's warehouse or a remote warehouse), and a random payment amount.

Retrieve the next order id Create a new Order Create a NewOrder for
the order

Process each OrderLine
Apply customer

discount and Tax

Add Order and
NewOrder to District

start

return

Add Order to Customer
Build a report
containing the

Customer and Order
information with all
OrderLine details

Create a new Orderline
Choose a supply

warehouse Retrieve Item and Stock

Reduce Stock Quantity
and update YTD and

order count

Calculate the item's
price

Add item's price to
Order total

start

return

Add the payment
amount to the

warehouse YTD total

Add the payment
amount to the district

YTD total

Adjust the customer's
balance, YTD total,
payment count, and

credit data

Record the payment in
the warehouse history

start

return

Build a report including
the warehouse, district,
customer, and payment

information

The SERT Suite - Design Document

23 February 2022 31 of 39 Copyright © 1988-2022 SPEC

7.8.8. Order Status Transaction

The input for an Order Status Transaction consists of a random district and either a customer ID or last name from
the user's warehouse.

7.8.9. Delivery Transaction

The input for a Delivery Transaction is a random carrier ID.

Retrieve the desired
Customer

Retrieve the most recent
Order for the Customer

Retrieve the OrderLine
information for each

item in the Order

start

return

Build a report showing
the current status of the
Order and all Orderlines

The SERT Suite - Design Document

23 February 2022 32 of 39 Copyright © 1988-2022 SPEC

7.8.10. Stock Level Transaction

The input for a Stock Level transaction is a random district from the user's warehouse and a random “low level”
threshold between 10 and 20.

7.8.11. Customer Report Transaction

The input for a Customer Report transaction consists of a random district from the user's warehouse and a random
customer ID or last name (from either the user's warehouse or a remote warehouse).

Find Stock whose Items
were purchased in the
last 20 Orders for this

District

Count the number of
the selected Stocks

whose quantity is less
than the threshold

start

return

Build a report showing
the threshold and the
number of low Stock

items found

Find the selected Customer
Search the warehouse History table for all

payments by this Customer
Include the Customer's 5 most recent

payments in the results

Search the district Order table for all orders
by this Customer

start

return

Include the Customer's 5 most recent
orders in the results Build a report including the Customer

information and the selected Order and
Payment information

The SERT Suite - Design Document

23 February 2022 33 of 39 Copyright © 1988-2022 SPEC

7.9. Memory Worklet: Flood3

7.9.1. General Description

The Flood3 workload is based upon STREAM, a popular benchmark that measures memory bandwidth across four
common and important array operations. For the long (64-bit) integer arrays used in Flood3, the following amounts
of memory are involved per assignment:

1. COPY: a(i) = b(i)

 -- 8 bytes read + 8 bytes write per assignment = 16 bytes / assignment

2. SCALE: a(i) = k * b(i)

-- 8 bytes read + 8 bytes write per assignment = 16 bytes / assignment

3. ADD: a(i) = b(i) + c(i)

-- 16 bytes read + 8 bytes write per assignment = 24 bytes / assignment

4. TRIAD: a(i) = b(i) + k * c(i)

 -- 16 bytes read + 8 bytes write per assignment = 24 bytes / assignment

The Flood3 score is based upon the aggregate system memory bandwidth calculated from the average of these four
tests multiplied by the amount of physical memory installed in the SUT. While Flood3 is based upon STREAM, it uses
no STREAM code and is implemented wholly in Java.

Flood3 enhances STREAM in a variety of important ways:

1. Flood3 is designed to fully exploit the memory bandwidth capabilities of modern multi-core servers.

Flood3 is multi-threaded and threads are scheduled to operate concurrently during bandwidth

measurements ensuring maximum throughput and minimizing result variability.

2. Flood3 requires little to no user configuration, yet automatically expands the data set under test to fully

utilize available memory.

Measuring aggregate system memory bandwidth on large servers with many cores and multiple memory controllers
is challenging. In particular, run-to-run variability is often unmanageable with existing memory bandwidth
benchmarks. Flood3 minimizes run-to-run variation by taking three memory bandwidth tests back-to-back and
discarding the first and last tests. This ensures that all threads are running under fully concurrent conditions during
the middle measurement which is used in Flood3 scoring calculations.

Flood3 scores scale with a SUT’s aggregate memory bandwidth as well as with the SUT’s physical memory
configuration. CPU, storage and network performance have little to no impact on Flood3 scores.

The Flood3 worklet automatically adjusts the amount of memory under test to fully utilize installed DRAM, and also
adjusts the number of iterations to improve run-to-run consistency. As a result, the run time will vary depending on
the system configuration details, including the amount of physical memory and the overall processor thread count.

7.9.2. Sequence Execution Methods

MinIterationsDirectorSequence – Flood3 is executed for a given set of iterations specified within config-all.xml.

The SERT Suite - Design Document

23 February 2022 34 of 39 Copyright © 1988-2022 SPEC

7.9.3. Metric

By default, Flood3 runs the four memory bandwidth tests that are also part of STREAM, but were independently
implemented (i.e. no code was utilized from STREAM). Each test returns a score that is based upon the measured
raw memory bandwidth:

score = bandwidthGbs

These scores are scaled (based upon load level), aggregated, and averaged. The load level is 100% in Flood_Full and
50% in Flood_Half (which uses data sets reduced down to 50% of Flood_Full):

 //measurement:

 result = Math.abs(RunCopySystem() * fLoadLevel);

 result += Math.abs(RunScale() * fLoadLevel);

 result += Math.abs(RunAdd() * fLoadLevel);

 result += Math.abs(RunTriad() * fLoadLevel);

 result /= 4; // take average

In turn, the SERT suite aggregates these results for all Flood3 threads. Typically, Flood3 achieves raw memory
bandwidth results around 60%-90% that of highly tuned, multithreaded (OMP) C++ STREAM binaries, but usually
with much better reproducibility. Furthermore, Flood3 utilizes nearly all available memory whereas STREAM uses
much smaller data sets.

7.9.4. Required Initialization

Flood3 calculates the amount of memory available to the thread and creates three 64-bit (long) integer arrays, a[],
b[], and c[], to completely utilize all available space. These arrays are initialized with random data. To ensure full
load concurrency during bandwidth measurements, a complete set of pre-measurement tests is launched prior to
the measurement period followed by the post-measurement tests. Only the test results for the measurement period
are utilized for Flood3 score generation.

7.9.5. Configuration Parameters

memory-under-

test
The default value of “-1 MB” turns on automatic configuration of the data set size.
However, the user can override this behavior and explicitly define the amount of
memory to test per JVM. Valid values are (san quotation marks): “200 MB”, “1.1 GB”,
“10000000 B”.

iterations Flood3 internally iterates the number of memory bandwidth tests based upon the
value of the iterations parameter. The default is -1 (determine automatically).

debug-level Detailed diagnostic information can be enabled through the debug parameter. Valid
values are 0 = no additional debug information (default), 1 = debug information
turned on, 2 = detailed debug information.

return-bandwidth The raw, aggregate system memory bandwidth calculated by Flood3 can be obtained
by setting the parameter return-bandwidth to “true” in which case Flood3 will return
measured memory bandwidth instead of a score. The default value is “false”.

The SERT Suite - Design Document

23 February 2022 35 of 39 Copyright © 1988-2022 SPEC

7.9.6. Transaction Code

Calculate available memory Allocate 64-bit integer
arrays a[], b[], c[]

Initialize arrays with
random integers

Execute pre-
measurement tests

(Copy, Add, Scale, Triad)
and discard scores

Execute measurement
tests (Copy, Add, Scale,
Triad) and calculate test

level scores

Execute post-
measurement tests
(Copy, Add, Scale,
Triad) and discard

scores

start

return

Calculate overall Flood
score based upon the

average of the four
measurement tests

The SERT Suite - Design Document

23 February 2022 36 of 39 Copyright © 1988-2022 SPEC

7.10. Memory Worklet: Capacity3

7.10.1. General Description

The Capacity3 worklet implements a transaction that exercises Java's XML validation package
javax.xml.validation. Using both SAX and DOM APIs, an XML file (.xml) is validated against an XML schemata file
(.xsd). To randomize input data, an algorithm is applied that swaps the position of commented regions within the
XML input data.

Memory scaling in Capacity3 is done through a scheme known as input data caching (IDC). In IDC, the universe of
possible input data (here, randomized XML file data) is pre-computed and then cached within memory before the
start of the workload. During workload execution, the input data for a particular transaction instance is then chosen
randomly and retrieved from this cache rather than computed on the fly. In order for the data store to completely
fit into the data cache physical memory of about twice the data store size is needed.

The Capacity3 worklet executes two intervals:

• Capacity3_Base has a fixed data store size of 4GB

• Capacity3_Max has a dynamic data store size calculated as half the size of available physical memory,
i.e. the maximum data store size that typically fits into data cache without causing cache misses. This
maximum data store size is not limited to 1TB as it was in Capacity2.

Cache size is computed as:

 MaxHeapSize * data-cache-to-heap-ratio (set to 0.6 in SERT)

While this worklet does contain transactions that are memory oriented, there is still a component that is influenced
by CPU performance.

7.10.2. Sequence Execution Methods

A Modified Parameters Sequence. Each interval consists of a No Delay Series where the parameter data-store-size
changes with each interval.

7.10.3. Metric

Metric formula for Capacity3

Transactions Per Second * sqrt(data-store-size)

The overall score will scale with memory size.

Note: In SERT 2.0 the Capacity worklet was replaced with the Capacity3 worklet which used an updated method to
run the worklet and calculate the metric.

7.10.4. Required Initialization

At initialization time, both XML and XML schemata files are read in from disk and saved in a buffer for future
use. (There will be no further disk IO once this is completed.) IDC initialization follows during which all possible input
data sets are pre-computed and cached in memory. For each input data set, a randomization algorithm is applied
to the original XML data to create variations in parsing without modifying file size or complexity.

7.10.5. Configuration Parameters

xml-schema-dir Specifies the directory of the XML schema file
xml-schema-file Specifies the name of the XML schema file
xml-dir Specifies the directory of the XML file
xml-file Specifies the name of the XML file

The SERT Suite - Design Document

23 February 2022 37 of 39 Copyright © 1988-2022 SPEC

enable-idc Enables/disables memory scaling using input data caching (IDC). Must be set to false.
iterations Number of executions per transaction.
debug-level Value governs the volume of debug messages printed during execution.
input-generate-

iterations
Number of XML file randomization iterations.

Additional IDC configuration parameters:
store-type Specifies the algorithm to use in generating data when a cache miss occurs
locality-

distribution
Specifies the probability distribution to use when randomly choosing input data
indices

data-store-size Specifies the size of the universe of possible input data
data-cache-size Specifies the size of the input data cache
data-cache-

report-interval
Governs the frequency of output messages on cache hit/miss ratio

custom-score-

policy
Specifies the algorithm to use in computing custom score reflecting cache size
configuration.

data-cache-size-

scale factor
Specifies the scaling factor to use in the DataCacheSizeMultiplierGB custom scoring
algorithm

data-cache-to-

heap-ratio
Ratio of cache size to JVM heap size used in automatic cache sizing

7.10.6. Transaction Code

Get random number

start

Translate to random
data index

In Cache?

No

Yes

iterations =1

return
XML input

Create byte array
input streams

Randomize XML data

Create SAX and DOM
input source

Validate XML using
SAX and DOM

The SERT Suite - Design Document

23 February 2022 38 of 39 Copyright © 1988-2022 SPEC

7.11. Storage IO Workload

7.11.1. General Description

The Storage-Workload has four different transactions, two random and two sequential transaction-pairs. Each pair
has a write and a read transaction.

7.11.2. Sequence Execution Methods

Graduated Measurement Sequence

7.11.3. Metric

Transactions (IO operations) per second.

7.11.4. Required Initialization

A set of files is created before execution of the transaction

7.11.5. Configuration Parameters

file-size-bytes size of a file
file-per-user number of files opened by each user
file-path location of the files - In this example the path is “D:\data\”, please note that the files

always reside in a subfolder called “data”.
sequential-max-

count
amount of blocks that are accessed by the sequential transaction in one file before the
next file is addressed

Example:

<file-size-bytes>1000000<file-size-bytes>

<file-path>D:\</file-path>

<file-per-user>2</file-per-user>

<sequential-max-count>8192</sequential-max-count>

File1 File 2

1. 2.3. 4.

User

8192 blocks 8192 blocks

[File Example (2 files per user and max-count of 8192)]

The SERT Suite - Design Document

23 February 2022 39 of 39 Copyright © 1988-2022 SPEC

7.11.6. Transaction – Code 1 - RandomRead

7.11.7. Transaction – Code 1 - RandomWrite

7.11.8. Transaction – Code 2 – SequentialRead

7.11.9. Transaction – Code 2 – SequentialWrite

