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1 INTRO: GOALS OF HPC BENCHMARKING AND

PERFORMANCEEVALUATION

The goal of benchmarking and performance evaluation, as
viewed in this paper, is to assess the performance and un-
derstand characteristics of HPC platforms and their important
applications. An obvious use of the gained results is the
search for machines that are best for a given purpose. Equally
important uses are the creation of yardsticks for research and
the anticipation of needs of future HPC technology.

The main thesis of this paper is that there is a dire need for
basing such assessments on realistic computer applications.
While the use of metrics that rely on measuring the behavior
of simple program kernels has served us for many purposes
in the past, it fails to answer questions that are of decisive
importance today and in the future. These questions deal with
the directions future HPC development should take, which
have a direct impact on the competitiveness of our industry
and nation.

Benchmarking and Performance Evaluation allow us to
answer two important areas of questions, to which we will
refer as theRelevant Questions:

1) How do HPC platforms perform in solving todays
important problems? We may learn that a biology
application may take a full year to fold a certain protein
on a present-day HPC platform. Beyond such absolute
time metrics, we may ask how computer platforms
perform relative to others for a certain application or
application area. Furthermore, we may be interested in
finding out how certain system components perform for
these applications. For example, we may ask for absolute
communication times, the fraction of IØtaken in the
overall execution, or the percentage of peak cpu power
exploited.

2) What are the characteristics of today’s computational
applications and how do these characteristics change
in future problems? We may want to know the memory
required by a realistic weather forecast problem or
how much communication will happen per quantity of
computation. We may also ask how these properties
change as a chemist increases the number of particles
in a molecular dynamics simulation 100-fold.

In this paper we focus on the first area of questions. Key to
both tasks is the use of today’s realistic applications and real-

istic assessments of what represents future problems. Efforts
to base performance evaluation and benchmarking on realistic
applications exist, today. However, they are often overlooked,
as we are still used to considering metrics that are based
on kernel benchmarks or even raw machine performance. A
main point of the present paper is to analyze the underlying
reasons. We compare metrics supplied by kernel and realistic
benchmark measurements and discuss their relationship. We
find that in most regards, today’s widely used benchmarks
and performance evaluation methods do not answer the Rel-
evant Questions. Realistic application benchmarks are able to
provide these answers. However, we have to pay the cost that
these codes are substantially more difficult to run.

Two properties of benchmarks are of paramount importance.
First, by using realistic computer applications as our yardsticks
for performance evaluation, we ensure that our observations
are of relevance. Second, we must be able toshare our
yardsticks with others. For example, it is not meaningful
to compare HPC systems using different applications that
are proprietary to different organizations. To become useful
yardsticks, these applications must be shared openly, so that
the same programs can be run on both systems and that the
features of the programs can be analyzed and understood in
detail by the readership of the evaluation results. Relevance
and openness are key requirements for all benchmarking
efforts.

In the remainder of this paper we will discuss three main
points:

• Although there has been a clear need for benchmarking
and performance evaluation with realistic applications,
doing so is by far not common practice. Section 2 de-
scribes the challenges faced by efforts that try to address
this need.

• Efforts to provide realistic application benchmarks do
exist. Section 3 describes the current state of these efforts.
Section 4 describes the only sustained effort today that
satisfies the above key requirements, SPEC HPC.

• Section 5 shows performance evaluation results of the
SPEC HPC2002 benchmarks, using theRelevant Ques-
tions introduced above. We will review kernel and real-
istic benchmarks in their ability to provide answers.



2 CHALLENGES FORHPC EVALUATION WITH REALISTIC

APPLICATIONS

The need for performance evaluation and benchmarking
with realistic applications has been widely acknowledged.
Better yardsticks have been called for by communities ranging
from customers of HPC systems to computer manufacturers
to research funding agencies to scientific teams. This section
tries to explain the stark contrast between the clear need and
present practice.

2.1 Simple Benchmarks are Overly Easy to Run

One of the greatest challenges for performance evaluation
with realistic applications is the simplicity with which kernel
benchmarks can be run. With a time investment of minutes to a
few hours, one can generate a benchmark report that seemingly
puts one’s machine “on the map”. The simplicity of Kernel
benchmarks may overcome portability issues – no changes
to the source code is necessary to port and optimize it to
the new machine. The simplicity may also overcome software
environment issues – the small code is unlikely to engage
compiler optimizations that are not yet proven or to break
programming tools that are available in a beta release. The
simplicity may also overcome hardware issues – the kernel
is unlikely to approach numerical instability, to which a new
processor’s floating point unit may be susceptible.

Unfortunately – for true HPC evaluation – these are the
features that wewant to impact the results. We do not want
a machine to show up in the “Best 100” if it takes major
code restructuring to port a real application, if porting such an
application requires major additional debugging, if the tools
and compilers are not yet mature, or if the hardware is still
unstable.

Similar to kernel benchmarks, specialized benchmarks have
been created for a large number of metrics. There are test suites
for message-counting in MPI applications, measuring memory
bandwidth of SMP platforms, gauging fork-join overheads of
OpenMP implementations, and many more. The SPEC bench-
marking organization (www.spec.org) alone distributes twelve
major benchmark suites, today. Like kernel benchmarks, these
diverse suites have an essential role, as they help us understand
a specific aspect of a system in some depth. When it comes
to understanding the behavior of a system as a whole, these
detailed measures are not adequate, however. Even if there
were a specific benchmark measuring each and every aspect of
a system, there is no formula that helps us combine the diverse
numbers into an overall system metric. For understanding
overall behavior and for quantifying the contribution of a
specific component to the whole system, we must consider
the overall performance of a realistic application.

2.2 Realistic Benchmarks Cannot be Abstracted from Real
Applications

A possible approach towards benchmarking with more re-
alistic applications may be to extract important excerpts from
real codes. In doing so, we want to preserve the features that
are relevant, while omitting the unnecessary. Unfortunately, in

this process, we are making decisions of what are the less
important parts of an application, and these decisions may be
wrong. For example, we may find a loop that executes 100
computationally near-identical iterations and reduce it to just
a few iterations. However, this abstraction might render the
code useless for evaluating adaptive compiler techniques;the
repetitive behavior can be critical for the adaptive algorithm
to converge on the best optimization technique. Similarly,
data down-sizing techniques [1] may ensure that a smaller
problem’s cache behavior remains the same. However, the
code would be useless for answering the question of what
the memory footprint of the realistic problem would be.

The difficulty of defining scaled-down benchmarks is also
shown by the many criteria for benchmark selection that
have been suggested in past efforts to define new evaluation
suites. It has been suggested that such codes be selected
so they contain a balance of various degrees of parallelism,
they should be scalable, simple yet reflective of real-world
problems, they should use a large memory footprint and a
large working set, they should be executable on a large number
of processors, exhibit a variety of cache hit ratios, flops per
cache miss, message densities, I/O activities, and they should
be amenable to a variety of programming models, including
shared-memory machines and clusters. Last but not least,
benchmark codes should represent a balanced set of computer
applications from diverse fields.

It is obvious that these demands cannot all be satisfied. In
fact, some of them are directly contradictory. Furthermore,
selecting our yardsticks by such criteria would dismiss the
fact that we want tolearn about these properties from real
applications. For example, we want to learn how scalable a
real application is, rather than selecting a scalable one inthe
first place. Similarly, if the realistic data sets of an application
do not have large memory footprints, then this is an important
result of our evaluation. Inflating input data parameters tofill
some memory footprint benchmark selection criterion would
not be meaningful.

We stipulate that the only realistic yardsticks for overall
system performance are full, real applications. We need to
face the challenge of using them in our evaluation efforts.
Techniques need to be developed that measure, within the
realistic problem and execution, the quantities that we wish
to observe. For example, a computer architect may “sample”
the execution of a full-size problem, by periodically turning
on a simulator for detailed analyses.

2.3 Today’s Realistic Applications May Not be Tomorrows
Applications

Large, realistic codes tend to be “legacy codes” with pro-
gramming practices that do not reflect tomorrow’s software
engineering principles and algorithms. For evaluating future
machines, we need tomorrow’s applications.

This is perhaps the strongest argument against using to-
day’s realistic applications for determining HPC needs of the
future. However, when asking what these future applications
should include, the answer is not forthcoming. Should we use
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selection criteria such as the ones discussed in Section 2.2?
Are we sure that the best of today’s algorithms and software
engineering principles will find themselves in tomorrow’s
applications? If we choose that path and miss, we risk losing
on two fronts: abandoning today’s established practices and
erring in what tomorrow’s technology will be.

It has been argued that the best predictor of tomorrow is
today’s established practice. Using current, real applications
combined with a continuous benchmark update process may
be our best option. The update process could be similar to
the one used in the SPEC benchmarking organization, where
the selection of the next benchmark suite begins immediately
after the latest release.

2.4 Benchmarking is not Eligible for Research Funding

Performance evaluation and benchmarking projects are
long-term infrastructure efforts. Performance data needsto be
gathered and kept for many years1. Furthermore, this task does
not easily include advanced performance modeling topics,
as would be of interest for scientific research in this area.
The authors of this paper have been involved in a number
of benchmarking projects sponsored by academic funding
agencies, all of which lacked continuity.

Establishing programs to create such community services
at funding agencies may be possible, and this paper may
help motivate such initiatives. One alternative is a combined
academic/industrial effort, such as SPEC’s High-Performance
Group (HPG). In this group, both industrial benchmarking
needs and academic interests joined forces to develop suites
of realistic high-performance computing applications. Tothe
authors’ knowledge, SPEC HPG is the only current and sus-
tained effort at performance evaluation, satisfying the criteria
of relevance and open sharing. We will describe the effort
further in this paper.

2.5 Maintaining Benchmarking Efforts is Costly

Maintaining a performance evaluation and benchmarking
effort entails collecting test applications, ensuring portabil-
ity, developing self-validation procedures, defining benchmark
workloads, creating benchmark run and result submission
rules, organizing result review committees, disseminating the
suite maintaining result publication sites, and even protecting
evaluation metrics from misuse. As explained above, this
process needs to re-start periodically – say, every 3–5 years.
Dealing with realistic, large-scale applications furtherneces-
sitates providing assistance to benchmark users and nurturing
the involvement of domain experts in the respective application
areas.

The high cost of these tasks is obvious. Many benchmark-
ing efforts have covered their costs through initial research
grants or volunteer efforts – the support typically covered
the first round of benchmark definitions, but failed to sus-
tain subsequent steps or result publication sites. Important
representatives of efforts that aimed at real applicationswere

1The 15 year old perfect-benchmarks@csrd.uiuc.edu mailinglist still re-
ceives occasional queries

the Perfect Benchmarks [2] and the ParkBench [3] collection,
described more thoroughly in Section 3. The NAS parallel
benchmarks [4] represent a notable intermediate step. Theyare
a collection of core algorithms extracted from real applications
in computational fluid dynamics.

The SPEC organization is the only organization that has
maintained full, continuously updating benchmarking efforts.
SPEC funding comes primarily from the involved industrial
membership, plus a comparably small fee for the actual
benchmark suites. SPEC is perhaps best known for its CPU
benchmarking suites, which update every 4-6 years (SPEC
CPU95, SPEC CPU2000, SPEC CPU2006 – in preparation).
SPEC’s HPC suite has a longer update cycle (SPEC HPC96,
SPEC CPU 2002). As SPEC HPC is the only sustained HPC
evaluation effort today, we will use it as the main reference
point, in this paper.

2.6 Proprietary Full-Application Benchmarks Cannot Serve
as Yardsticks

It has been argued that, if realistic benchmarks are to be
used, they must be the exact applications that will run on the
target system of interest to the reader. Many such applications
are proprietary. The use of proprietary applications for the
evaluation of computer systems is in direct conflict with
our criterion for open sharing of yardsticks. Clearly, for the
prospective customer of a computer system, their own applica-
tions seem the best choice for testing the desired functionality
of a system. If multiple vendors commit to running these
applications in a way that can be compared fairly, this may
be best for the customer. However, as the applications are
proprietary, the generated performance claims can neitherbe
verified nor scrutinized by the scientific community or the
public. Hence their significance outside the customer-vendor
relationship is small.

It is worth noting that, even to the above customers,
public benchmarks may be of higher value. As described in
Section 2.5, generating fair benchmark results is very costly.
During a procurement phase, vendors are under high pressure
to produce good results in a very short period of time, often
competing internally for machine resources that can be used
for benchmarking purposes. Unless the customers supervise
this process very closely and with significant expertise, they
may not obtain results that can be compared in a fair manner.
Without any deceptive intentions on the vendor side, the
lack of an extremely clear evaluation methodology often
allows shortcuts and “optimizations” to be taken that may
differ significantly between the involved evaluation groups.
By contrast, when using established, public full-application
benchmark results, although these applications may not con-
tain computational patterns identical to the customer’s codes,
the consistency and time-to-availability of the performance
numbers may outweigh this drawback.
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3 STATE OF THE ART OF BENCHMARKING WITH

REALISTIC APPLICATIONS.

Performance evaluation efforts with real applications have
begun to emerge in 1988 with the Perfect Benchmarks [2],
[5]. This set of scientific and engineering applications was
created with the intent to replace kernel-type benchmarks
and the commonly used peak-performance numbers. The Per-
fect benchmarks were a significant step in the direction of
application-level benchmarking. Perhaps more important than
their use for overall machine benchmarking was the presence
in the research community for evaluating new software and
hardware techniques and components. The Perfect Bench-
marks introduced a methodology ofperformance diaries,
which recorded program modifications and the performance
improvements they led to. The Perfect codes continue to be
distributed to the research community for current performance
evaluation efforts. The Perfect Benchmarks effort was funded
by research grants. The “Perfect 2” effort was unable to obtain
continued funding and did not result in the dissemination
of a new suite. The original Perfect Benchmarks are small
compared to today’s realistic applications (the largest included
some 20,000 lines of Fortran 77) and their data sets execute
in the order of seconds on today’s machines. No result web
site is available for the Perfect Benchmarks.

Similar to the Perfect Benchmarks, the ParkBench [3] effort
was created with initial research funding, but did not update its
initial suites in response to newer generations of HPC systems.
The effort was very ambitious in its goal of delivering a set of
benchmarks that range from kernels to full applications. The
largest, full-application suite was never created, however.

The Standard Performance Evaluation Corporation (SPEC)
was also founded in 1988. SPEC is largely vendor-based,
although the organization includes a range of academic affil-
iates. Initially, SPEC focused on benchmarking uniprocessor
machines and, in this area, has become the leader in providing
performance numbers to workstation customers. SPEC suites
have also increasingly been used by the research community
for evaluating the performance of new architecture concepts
and software prototypes. Today, SPEC offers a large number of
benchmarks that evaluate workstations, graphics capabilities,
and high-performance systems. Most notably for HPC evalu-
ation, in 1994, SPEC’s High-Performance Group was formed,
out of an initiative to merge the expertise in high-performance
computer evaluation of the Perfect Benchmarks effort with
SPEC’s capability to sustain such efforts long-term. Sinceits
foundation, this group has produced a number of benchmarks
for HPC, including the HPC suite [6], [7], [8], the OMP
suite (OpenMP applications) [9], [10], [11] and the MPI suite
(MPI applications, under development). The SPEC HPC suite
satisfies the criteria of relevance and open sharing, provides
a result submission and review process, a result repository,
and a continuous benchmark update process. The remaining
sections of this paper will describe this suite in more detail.

A range of other attempts to provide HPC benchmarks have
been made, over the past decade. A notable example is the

Euroben [12] effort (www.euroben.nl). Also, the NAS [4] par-
allel benchmarks aim at HPC benchmarking with application
codes. The suite includes several small codes derived from
computational fluid dynamics applications, also referred to as
the NAS kernels.

A notable, recent effort is the benchmarking project
of DARPA’s2 High-Productivity Computing Systems
(HPCS) [13] program. Currently, this effort has defined suites
of kernel benchmarks and a number of synthetic compact
applications. Also, the National Science Foundation’s High
Performance Computing System Acquisition program defines
a set of benchmarks that include realistic applications
satisfying the criteria of relevance and openness [14].
Currently, there is no associated effort to create and maintain
a benchmark result repository that could be viewed by the
public, however.

3.1 Metrics for HPC Evaluation

There is general agreement that overall performance must
be evaluated using wallclock time measurements. One open
and often controversial issue is how to combine such mea-
surements for multiple benchmarks into one number. SPEC
HPC’s approach is to leave this decision up to the reader of the
benchmark reports. That is, each code is reported separately.
Other suites, such as SPEC CPU and SPEC OMP, report the
geometric mean of the individual program performance results.
Similarly, the TAP list, which ranks the SPEC HPC results (see
Section 4.2) defines an aggregate performance metric.

Kernel benchmarks evaluate a wide variety of system com-
ponents. Accordingly, the metrics vary widely. This is also
true for metrics that characterize computational applications.
Examples are working set sizes, hardware counter values
(cache hit rates, instruction counts), and software metrics (code
statistics, compiler results).

3.2 Tools for Gathering Metrics

Obtaining overall timing metrics is relatively straightfor-
ward. By contrast, tools for gathering detailed execution
characteristics are often platform-specific. Therefore, it can be
difficult to obtain the metrics of interest on a given platform;
it is even more difficult to conduct comparative evaluations
that gather a certain metric across a number of platforms.
Among the tools we used in our projects arempiP, hpmcount
and strace. mpiP is a lightweight profiling library for MPI
applications, that reports the percentage of time spent in
MPI [15]. It includes the times used by each MPI function.
IBM’s Hardware Performance Monitor [16] suite includes a
simplified interface, hpmcount, which summarizes data from
selected hardware counters, and computes some useful derived
metrics, such as instructions per cycle and flops per cycle. We
measured I/O behavior by recording I/O system call activities,
using the strace command; from this output we extracted
statistics for file I/O using a script.

These tools are but a small sample of a large set of
instruments available on the myriad of today’s platforms. An

2Defense Advanced Research Project Agency
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important goal is to achieve uniformity. Tools and interfaces
need to be developed that allow benchmarkers to gather
relevant performance data consistently across the range of
available platforms. Ideally, these tools will not just report
volumes of performance counter results; they will be able to
abstract these volumes, creating the end-metrics that are of
interest to the reader.

4 SPEC HPC BENCHMARKS

This section describes the SPEC HPC benchmarks, which
is the result of an ongoing effort to make available as a
benchmark suite relevant and openly shared, full applications.
The section also describes a project to use these benchmarks
in a rank list of HPC platforms based on these applications.

4.1 The SPEC HPC2002 suite

The SPEC HPC benchmarks are based on computational
applications that are in wide use and that can be openly
distributed to the community. The codes are implemented
using the MPI and OpenMP standards for parallel processing.
The intended consumers of the benchmark results include end-
users, system vendors, software vendors, and researchers.

The SPEC HPC2002 suite improves upon and replaces
SPEC HPC96. It comprises three benchmarks. SPECseis,
SPECchem, and SPECenv. Each code has a small- and a
medium-sized data set (with increasingly larger sets under
development).

SPECseis:is also known asSeismic. It is a suite of codes
typical of seismic processing applications used in industry
for the search of oil and gas. The code consists of four
configurable application phases: data generation, stacking of
data, time migration, and depth migration. The first phase
generates synthetic seismic traces from a configuration of
simple subsurface structures provided by the data set. Stacking
of data is used to reduce the large volume of data that has to
be processed by summing seismic traces that have a common
midpoint between the source and receiver of the trace. Time
and depth migration image the subsurface structures. Seismol-
ogists could then use the images to locate cavities where it is
most likely to find an oil reservoir.

Two migration (imaging) techniques are included since both
are prevalent in today’s industry. Time migration transforms
the traces into the Fourier domain and solves for the intersec-
tion of the wave f source to the point of reflection and the wave
from the point of reflection to the receiver. On the other hand,
depth migration uses a finite difference scheme to propagate
waves down in depth. Time migration is significantly faster
than depth migration but assumes that velocity is horizontally
static whereas depth migration accounts for laterally varying
velocity, and can therefore handle surfaces at grades as steep
as 45 degrees.

SPECseis includes approximately 25,000 lines of Fortran
and C code. It can run in OpenMP or MPI mode.

SPECchem:is also known asGAMESS. This code is
often used to exhibit performance of high-performance sys-
tems among computer vendors. Portions of GAMESS codes

date back to 1984. It comes with many built-in functionalities,
such as various field molecular wave-functions, certain energy
corrections for some of the wave-functions, and simulation
of several different phenomena. Depending on what wave-
functions are chosen, GAMESS has the option to output
energy gradients of these functions, find saddle points of the
potential energy, compute the vibrational frequencies andIR
intensities, and more.

GAMESS can compute SCF wavefunctions using methods
ranging from RHF, ROHF, UHF, GVB, and MCSCF. Corre-
lation corrections to these SCF wavefunctions include Con-
figuration Interaction, second order Perturbation Theory,and
Coupled-Cluster approaches, as well as the Density Functional
Theory approximation. Nuclear gradients are available, for
automatic geometry optimization, transition state searches, or
reaction path following. Computation of the energy hessian
permits prediction of vibrational frequencies, with IR or
Raman intensities. Solvent effects may be modeled by the
discrete Effective Fragment Potentials, or continuum models
such as the Polarizable Continuum Model. Numerous relativis-
tic computations are available, including third order Douglas-
Kroll scalar corrections, and various spin-orbit couplingop-
tions. The Fragment Molecular Orbital method permits use of
many of these sophisticated treatments to be used on very large
systems, by dividing the computation into small fragments.

SPECchem includes 120,000 lines of Fortran and C code.
It can run in OpenMP, MPI or mixed MPIOpenMP mode
(hybrid).

SPECenv:which is also known as WRF, is developed
within the Weather Research and Forecasting Modeling Sys-
tem development project. It is a next-generation mesocale
numerical weather prediction system designed to serve both
operational forecasting and atmospheric research needs. The
project is being undertaken by several agencies. Members
of the WRF Scientific Board include representatives from
EPA, FAA, NASA, NCAR, NOAA, NRL, USAF and several
universities. SPEC HPG integrated version 1.2.1 of the WRF
weather model into the SPEC tools for building, running and
verifying results. This means that the benchmark runs on
more systems than WRF has officially been ported to. The
benchmark runs use restart files that are created after the
model has run for several simulated hours. This ensures that
cumulus and microphysics schemes are fully developed during
the benchmark runs. The code features multiple dynamical
cores, a 3-dimensional variational (3DVAR) data assimilation
system, and a software architecture allowing for computational
parallelism and system extensibility. WRF is suitable for a
broad spectrum of weather modeling applications across scales
ranging from meters to thousands of kilometers.

SPECenv includes 180,000 lines of Fortran90 and C code.
It can run in OpenMP, MPI or mixed MPIOpenMP mode
(hybrid).

4.2 TAPList: Ranking HPC Systems with Real Applications

The benchmark reports of the SPEC HPC applications have
been used to create a rank list of HPC platforms based
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Fig. 1. TAPlist: Rank List of Top Application Performers. Inthis aggregate view, the SPEC HPC2002 results of three benchmarks are combined into an
overall rank. The bars are subdivided into the contributions of each benchmark to the rank.

on realistic applications (www.purdue.edu/TAPlist). Figure 1
shows the list as of January 2006. The TAP list defines an
aggregate metric with which the results of the three benchmark
applications can be combined into an overall rank. The metric
weights the individual application performance results accord-
ing to their average runtime across the different platforms. The
list also allows a single benchmark to be used for ranking.

Using the aggregate metric, the system currently ranking on
top is an HP server DL145 G2. The TAP list contains links
to the SPEC HPC 2002 reports. The GAMESS (SPECchem)
result of the top performer was generated with a 128-processor
run and the WRF (SPECenv) result used a 192-processor
system. No Seismic (SPECseis) results were submitted for
this machine. An interesting observation is that none of the
platforms ranking high on kernel-based rank lists, such as
the Top 500 Supercomputer Sites (www.top500.org), have
reported numbers for SPEC HPC20002. Some of the reasons
were discussed in Section 3.

5 PERFORMANCERESULTS

This section presents performance results of the SPEC
HPC2002 benchmarks in terms of theRelevant Question #1
introduced in Section 1. Where appropriate for comparison,
results obtained from kernel benchmarks are shown. For each
type of result we discuss the degree to which kernels and real
application benchmarks are able to provide answers.

5.1 Overall Performance

Absolute execution times:Table 1 shows overall
problem solving times of the SPEC HPC applications.
All measurements have been taken using themedium
datasets. The used machines include an IBM P690
(www.ccs.ornl.gov/Cheetah/Cheetah.html), an SGI Altix
(www.ccs.ornl.gov/Ram/Ram.html) and an Intel Xeon cluster
(www.itap.purdue.edu/rcac/news/news.cfm?NewsID=178).

The table describes the problems solved by these data sets.
The run times for the medium data sets of SPEC HPC2002
on an IBM P690 platform range from approximately 10
minutes (for Seismic) to over an hour (for GAMESS).

Relative Application Performance:Figure 2 shows the
relative performance of the individual benchmark applications
on three machines, an Intel Xeon cluster, an SGI Altix, and an
IBM P690 platform. For comparison, the figure also shows the
performance of the HPL [17] benchmarks. The measurements
were taken up to 64 processors, except for Seismic (up to 32;
the 64-processor runs did not validate).

The three applications lead to different rankings of the
executing machines. The Altix machine performs the best
except for the Seismic benchmark. The Xeon cluster performs
best for the Seismic benchmark. The WRF benchmark does
not scale beyond 32 processors on the Altix and Xeon cluster
systems, but still scales up to 64 processors on the P690
platform. The Seismic benchmark shows poor scaling on Altix
and shows slightly better scaling behavior on the other two
platforms, up to 16 processors.

In terms of the scaling behavior, shown in Figure 3, the
P690 platform performs best on both Seismic and WRF, but
worst on GAMESS. The Altix machine is worst on Seismic,
whereas the Xeon cluster is worst on WRF. For GAMESS, the
Altix machine performs best. Both the Altix and Xeon cluster
platforms show superlinear behavior up to 32 processors for
GAMESS.

The kernel benchmark results (HPL with N=9900) are most
similar to those of WRF.

5.2 Component Performance

Measurements of system components allow us to gain
insight into the behavior of individual machine features. Their
relative performance shows the contribution of a feature to
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TABLE 1. Wallclock execution times and problems solved by the SPEC HPC applications on the IBM P690 platform, using 32 processors.

Application Execution time Problem description formediumdata set
SPECseis
(Seismic)

625s The data set processes seismic traces of512 × 48 × 128 × 128. (samples per
trace×traces per group×groups per line×# of lines, where a trace corresponds to a
sensor that has a sampling frequency, the sensors are strungout on multiple cables
behind a ship.) The total data set size in the Phase 1 of SPECseis is 1.5 GB. It is
reduced to 70 MB in Phase 2.

SPECchem
(GAMESS)

3849s The data set Computes SCF (Self-Consistent Field) wavefunctions (RHF type) for
thymine(C5H7N3O – 16 atoms), one of the bases found in nucleic acids.

SPECenv
(WRF)

742s The data set simulates the weather over the Continental United States for a 24 hour
period starting from Saturday, November 3nd, 2001 at 12:00 A.M. The grid is of
size 260x164x35 with a 22km resolution.

the overall solution of a computational problem. Compo-
nent performance relative to some upper bound shows us
how efficiently the machine feature is exploited, compared
to theoretical limits. The following figures show selected
measurements of the communication, computation, and I/O
components.

Figure 4 shows times taken by the communication opera-
tions, on a per-processor basis. For Seismic, the communica-
tion is shown separately for the four phases of the execution.
For HPL, two different data sets are shown. Communication
takes from 5% to 25% of the overall execution time, with
Seismic doing the least amount of communication, followed
by WRF and then GAMESS. HPL communicates less than the
application codes; with increasing data set size, communica-
tion reduces significantly. This feature of the kernel benchmark
leads to the generally good scaling behavior on very large
machines; it contributes to the difference in rank lists of
realistic versus kernel benchmarks, mentioned in Section 4.2.

The most apparent feature in all graphs of Figure 4 is
the significant communication load imbalance. In Phase 4 of
Seismic, communication appears to increase linearly and vary
significantly with the processor number. In GAMESS, a single
processor communicates 100% of the time. WRF and HPL are
the most balanced; however, the difference between the least
and most communicating processors is still in the 50% range.

Parallel I/O in Seismic:Figure 5 shows disk I/O volume
and time for Seismic, on a 32-processor run. (In GAMESS
and WRF, I/O is performed on one processor only; HPL has
no disk I/O). The graphs show the four phases of Seismic
in sequence. The I/O in Phase 1 dominates and the volume
of read operations is an order of magnitude less than that of
write operations. While these I/O volumes are balanced, the
I/O times taken on the 32 processors exhibit significant load
imbalance. Also, read and write times are similar, despite the
differences in volumes.

Effective I/O Bandwidth:Figure 6 shows the overall I/O
volume and percent time taken. From that data, the effective
bandwidth is computed. For Seismic, the four phases are
measured separately. The figures are in logarithmic scale.

The I/O volumes in the six codes (four Seismic phases,
WRF, and GAMESS) range form 61 MB to 5545 MB. The
fraction of execution time taken by the I/O is small in
both GAMESS and WRF, but significant in Seismic. The

computed effective I/O bandwidth numbers show significantly
less efficient use of I/O in Seismic than in the other two codes.

Memory Footprints: Figure 7 shows the memory foot-
prints of the benchmarks, as a function of the number of
processors. Again, Seismic is split into its four execution
phases. There are two different types of behavior. WRF and
Seismic Phase 3 and 4 exhibit the commonly expected behav-
ior: the memory footprint decreases steadily with increasing
processor numbers. By contrast, in Seismic Phase 1 and 2
and GAMESS, the memory footprint is independent of the
number of processors. This finding is important, as it refutes
the common assumption that larger systems will be able to
accommodate larger data sets. This assumption is the basis
for a benchmark methodology that allows data sets to “scale”
and thus reduce communication (as discussed in Figure 4 for
HPL), leading to seemingly improved performance numbers
on large systems. Our results show that this path to scalability
may not be correct.

5.3 Discussion of Kernels versus Full Applications

TABLE 2. Comparison of kernel versus full-application metrics in their

ability to answer theRelevant Questions. (X=good answer;–=limited

answer; n/a=no answer)

Question Ability to answer
Kernels Full Apps.

What time is required to solve important
computational problems on todays HPC plat-
forms?

n/a X

What is the relative, overall performance of
HPC platforms?

– X

How do system components perform? X –
What is the importance of system compo-
nents relative to each other?

n/a X

What is the importance of system compo-
nents relative to upper bounds?

– X

What are the characteristics of important
computational problems?

– X

What are the characteristics of important
future problems?

– (X)

Table 2 compares kernel versus full application benchmarks
in their ability to answer theRelevant Questions. For obvious
reasons, kernel benchmarks do not provide answers to the first
question; execution times of real problems cannot be inferred
from kernel execution times. By contrast, as SPEC HPC2002
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Fig. 2. Execution times of the SPEC HPC applications on threeplatforms.
For comparison, the execution times of the same machines using the HPL
kernel benchmarks are shown.

Fig. 3. Scaling behavior of the SPEC HPC applications on three platforms.
For comparison, the scaling behavior of the same machines using the HPL
kernel benchmarks are shown.
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Fig. 4. Communication times of the SPEC HPC 2002 and the HPL
benchmark, on 16 processors of an IBM P690 system, as percentof overall
execution time.

Fig. 5. Disk I/O volume and time spent in Seismic, on 32 processors of an
Intel Xeon cluster. In both WRF and GAMESS, a single processor performs
all I/O.

benchmarks and their data sets represent real applicationsthat
are in significant use today, they provide direct answers.

For the question of relative performance, an answer can be
given by both types of benchmarks. As Figure 2 has shown,
the ranking depends on the application. While the HPL kernel
performance behavior has similarities to the WRF application,
the behaviors of GAMESS and Seismic are significantly
different.

While application benchmarks give us a realistic picture of
the absolute and relative performance of system components,
kernels give limited answers. The strength of specialized,
kernel benchmarks is to measure individual machine features.
Obtaining detailed diagnoses requires us to focus on a par-
ticular system aspect, for which kernel programs are most
adequate. Comparison across machines may also be useful;
however, the results do not answer the question of the relative
importance of components. For example, combining Figure 4
and 6 would break down an execution into computation,
communication and I/O. Obviously, a kernel metric cannot
do the same.

Kernel metrics may give an answer to the question of
what percentage of peak (cpu power, communication or I/O
bandwidth) can be achieved. They are generally useful as
idealized bounds under a given code pattern. These result
cannot be interpreted to represent the percentage of peak
reached by a real application.

Figure 7 gave a good example of answers that differ
drastically between real application and kernel benchmarks.
Even though the HPL benchmark is often used as a yardstick
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Fig. 6. Overall I/O volume, time, and effective I/O bandwidth used on 32
processors of an Intel Xeon cluster

Fig. 7. Benchmark memory footprints (total memory size per processor) on
an Intel Xeon cluster

for communication-oriented tasks, it does not represent the
behavior of half of the measured applications.

Table 2 also lists two issues belonging to Relevant Question
#2, which deals with the characteristics of applications. Evi-
dently, this is an area where kernel benchmarks cannot help.
How to predict future application behavior is controversial. It
has been argued [18] that kernels may be better predictors, as
they are more flexible in extrapolating into various dimensions.
In Section 2.3 we have argued that such extrapolations are
significantly based on assumptions about the important versus
less important parts of future applications; measuring today’s
realistic applications may be the better basis for extrapolations
into the future.

6 CONCLUSIONS

There is a dire need for basing performance evaluation
and benchmarking results on realistic applications. We have
discussed challenges in doing so and reviewed the state of the
art in this field. The SPEC HPC effort is a unique effort that
satisfies the main criteria for real-application benchmarking:
relevance and openness. We have presented measurements of
the SPEC HPC 2002 codes, giving answers to theRelevant
Questionsthat benchmarking aims to answer. We have com-
pared our results with those obtained from kernel benchmarks
(HPL). In comparing kernel versus full-application bench-
marks we find that kernel benchmarks are the best choices
for measuring individual system components. While this is an
important aspect of performance evaluation, there is a large
range of questions that can only be answered satisfactorily
using real-application benchmarks.
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