
Analyzing the Processor Bottlenecks in SPEC CPU 2000

Joshua J. Yi1, Ajay Joshi 2, Resit Sendag 3, Lieven Eeckhout4, and David J. Lilja5

1 - Networking and Computing Systems Group
Freescale Semiconductor, Inc.

Austin, TX
joshua.yi@freescale.com

3 - Department of Electrical and Computer Engineering
University of Rhode Island

Kingston, RI
sendag@ele.uri.edu

2 - Department of Electrical and Computer Engineering
University of Texas

Austin, TX
ajoshi@ece.utexas.edu

4 – Department of Electronics and Information Systems
Ghent University
Ghent, Belgium

leeckhou@elis.ugent.be

5 - Department of Electrical and Computer Engineering
University of Minnesota

Minneapolis, MN
lilja@ece.umn.edu

Abstract
The performance of a processor is limited by the

specific bottlenecks that a benchmark exposes while
running on that processor. Since the quantification of
these bottlenecks can be extremely time-consuming,
our prior work proposed using the Plackett and
Burman design as a statistically-rigorous, but time-
efficient method of determining the processor’s most
significant performance bottlenecks. In this paper, we
use the Plackett and Burman design to quantify the
magnitude of the bottlenecks in the SPEC CPU 2000
benchmark suite from the viewpoints of both
performance and energy consumption. We then use
Principal Components Analysis, and hierarchical and
K-means clustering algorithms to determine the
similarity of the benchmarks based on their energy-
delay production bottlenecks.

1 Introduction
When running a benchmark on a processor, the

bottlenecks that the benchmark exposes in the
processor ultimately determines the execution time of
the benchmark. For example, if the various queues in
the load-store unit (LSU) are too small, then trying to
decrease the execution time of the benchmark solely by
increasing the processor’s issue width or its number of
simple integer ALUs is futile since the performance
bottleneck is the LSU. However, while the LSU may
be the performance-limiting bottleneck for one
benchmark, the size of the L1 D-cache may be the
limiting bottleneck for another benchmark. In an

analogous way, processor components may be energy
consumption bottlenecks in that those components
ultimately determine the overall energy consumption of
the processor.

Although it is very important to precisely identify
the bottlenecks for a specific processor and benchmark,
determining which processor components are the
bottlenecks is a non-trivial task, and determining the
relative significance and ordering of these bottlenecks
is even more difficult. To minimize the difficulty of
determining the significance of a processor’s
bottlenecks, Yi et al. [20] proposed using the Plackett
and Burman (P&B) design [13] to determine which
processor parameters, or bottlenecks, have the most
effect on performance.

In this paper, we use the P&B design to determine
the most significant performance and energy
consumption bottlenecks for the benchmarks in the
SPEC CPU 2000 benchmark suite. Then, we use
Principal Components Analysis (PCA), and
hierarchical and K-means clustering algorithms to
determine which benchmarks have similar performance
and energy consumption bottlenecks.

This paper makes the following contributions:

1. It quantifies and analyzes the performance
and energy consumption bottlenecks in
the SPEC CPU 2000 benchmarks.

2. It determines the similarity of benchmarks
based on their bottlenecks.

The remainder of this paper is organized as

follows: Sections 2, 3, and 4 describe some related
work, the P&B design, and the benchmarks and
simulation methodology that we used in this paper,
respectively. Sections 5 and 6 present the results,
while Section 7 summarizes.

2 Related Work
Yi et al. [20] proposed using the P&B design to

improve the statistical rigor of simulation
methodology. More specifically, they proposed using
P&B design as the foundation to choose processor
parameters, select a subset of benchmarks, and analyze
the effect of a processor enhancement. This paper
builds on that work by using the P&B design to
determine the most significant performance and energy
consumption bottlenecks for the entire SPEC CPU
2000 benchmark suite, and similarity of benchmarks
based on those bottlenecks.

Eeckhout et al. [3, 4] characterized benchmarks by
gathering a set of metrics such as the instruction mix,
branch prediction accuracy, cache miss rates, and basic
block lengths for each benchmark and input set pair.
After gathering these metrics, they used PCA to
determine the principal components for each pair, and
then clustered the pairs based on their principal
components. Phansalkar et al. [12] also used PCA to
characterize the benchmark and input set pairs, but
they used K-means clustering and the Bayesian
Information Criterion instead to cluster the pairs.
Vandierendonck and De Bosschere [17] analyzed the
SPEC CPU 2000 benchmark suite peak results on 340
different machines representing eight architectures, and
used PCA to identify the redundancy in the benchmark
suite. Finally, Eeckhout et al. [5] compared the
efficacy of using Independent Components Analysis
(ICA) instead of PCA for benchmark subsetting. One
key difference between these papers and ours is that
the focus of these papers is benchmark subsetting while
this paper primarily focuses on analyzing the
performance and energy consumption bottlenecks in
the SPEC CPU 2000 benchmarks.

Finally, Tune et al. [15, 16] and Fields et al. [6, 7,
8] proposed techniques to predict the criticality of
instructions to improve execution efficiency of the
processor. The key difference between their papers
and ours is that we use a statistically-rigorous
technique to quantify the significance of each
bottleneck across the entire run of the benchmark while
they use heuristics to dynamically estimate the
criticality of individual instructions.

3 The Plackett and Burman Design: Finding
Processor Bottlenecks
To determine the bottlenecks in the processor, we

used the P&B design, with foldover [11], as described
in [20]. For computer architects, the P&B design is a

statistical technique that can be used to determine the
significance of the processor’s bottlenecks, at an O(N)
simulation cost, where N is the number of bottlenecks.
By comparison, using a design such as ANOVA [10]
requires O(2N) simulations for only a little additional
accuracy.

3.1 Mechanics of the Plackett and Burman
Design

The first step to use a P&B design is to construct
the design matrix. Since P&B designs exist only in
sizes that are multiples of 4, the base P&B design
requires X simulations, where X is the next multiple-
of-four that is greater than N. The rows of the design
matrix correspond to different processor configurations
while the columns correspond to the parameters’
values in each configuration. When there are more
columns than parameters, then the extra columns serve
as “placeholders” and have no effect on the simulation
results.

Table 1. Plackett and Burman design, with
foldover (X = 8)

A B C D E F G Exec. Time
+1 +1 +1 -1 +1 -1 -1 9
-1 +1 +1 +1 -1 +1 -1 11
-1 -1 +1 +1 +1 -1 +1 20
+1 -1 -1 +1 +1 +1 -1 10
-1 +1 -1 -1 +1 +1 +1 9
+1 -1 +1 -1 -1 +1 +1 74
+1 +1 -1 +1 -1 -1 +1 7
-1 -1 -1 -1 -1 -1 -1 112
-1 -1 -1 +1 -1 +1 +1 17
+1 -1 -1 -1 +1 -1 +1 76
+1 +1 -1 -1 -1 +1 -1 6
-1 +1 +1 -1 -1 -1 +1 31
+1 -1 +1 +1 -1 -1 -1 19
-1 +1 -1 +1 +1 -1 -1 33
-1 -1 +1 -1 +1 +1 -1 6
+1 +1 +1 +1 +1 +1 +1 4
-34 -224 -96 -202 -110 -170 32

For most values of X, the design matrix is simple
to construct. For these values of X, the first row of the
design matrix is given in [13]. The next X – 2 rows are
formed by performing a circular right shift on the
preceding row. The last line of the design matrix is a
row of “-1”s. The gray-shaded portion of Table 1
illustrates the construction of the P&B design matrix
for X = 8, a design appropriate for investigating 7 (or
fewer) parameters. When using foldover, X additional
rows are added to the matrix. Although this doubles
the simulation cost, the advantage of using foldover is
that it filters out the effects of interactions from the
single parameter bottlenecks, while also allowing the
user to determine the significance of two-parameter

interactions. The signs in each entry of the additional
rows are the opposite of the corresponding entries in
the original matrix. Table 1 shows the complete P&B
design matrix with foldover; rows 10 to 17 show the
rows that were added for foldover.

A “+1”, or high value, for a parameter represents a
value that is higher than the range of normal values for
that parameter while a “-1”, or low value, represents a
value that is lower than the range of normal values.
Ideally, the high and low values for each parameter
should be just outside of the normal range of values.
For example, if 16KB and 32KB are typical L1 D-
cache sizes, then an appropriate low value might be
8KB while an appropriate high value might be 64KB.

The set of low and high values that we used in this
study is similar to those found in [20]. We fixed the
issue width to be 4-way to eliminate any potential
issue-width dependency for the other parameters.

3.2 Calculating the Significance of Bottlenecks
Using the Plackett and Burman Design

To compute the effect of each parameter, we
multiply the output value (e.g., execution time, energy
consumption, etc.) by the parameter’s P&B value (+1/-
1) for that configuration and sum the resulting products
across all configurations. For example, we compute
the effect of parameter A is computed by weighting the
Execution Time Column with Column A in Table 1:

EffectA = (1 * 9) + (-1*11) + … + (-1*6) + (1*4) = -34

Only the magnitude of an effect is important; its
sign is meaningless. The effect that a parameter has
represents how much of the total variation in the output
value is attributable to that parameter. Therefore, a
parameter that has a large effect on the execution time
accounts for a significant amount of variability in the
execution time, which makes it a significant
performance bottleneck (since changing the
parameter’s value results in large changes in the
execution time).

After simulation, we computed the percentage of
the variability in the output value across all
configurations that can be assigned to each bottleneck
on a per-benchmark basis, in a manner similar to how
one computes the percentages for ANOVA [10]. By
examining the percentage effect that each bottleneck
has on the average cycles-per-instruction (CPI) or
average amount of energy-per-instruction (EPI) for that
suite or benchmark, we can determine absolute and
relative significance of the performance and energy
consumption, respectively, bottlenecks in the
processor.

4 Simulation Methodology
In this paper, to gather the profiling data for the

P&B design simulations, we used SMARTS [19],
which estimates both the performance and energy
consumption (cc3 power consumption measurement),
after adding user-configurable instruction latencies and
throughputs. All simulations were run until the
sampling frequency was greater than the recommended
frequency.

Since we wanted to use a set of benchmarks that
had a wide range of behavior and represented a wide
range of applications, i.e., general-purpose computing,
we decided to use the SPEC CPU 2000 benchmark
suite. We downloaded pre-compiled Alpha binaries
from [18], and evaluated all benchmark and
reference input set pairs, with the exceptions of
vpr-place and perlbmk-perfect – for a total of 46
benchmark and input set pairs – as they both crash
SMARTS.

Note that, in the remainder of this paper, for
brevity, we often use the term “benchmarks” to
represent both the benchmark and its input set.

5 Quantifying the Bottlenecks in SPEC CPU
2000

5.1 Processor Performance Bottlenecks
Table 2 shows the results of a P&B design with

foldover (X = 44), where the bottlenecks are sorted in
descending order of their average percentages. This
table shows that, based on the average percentage,
there are seven significant bottlenecks. We draw this
conclusion based on the relatively large difference
between the average percentage of the seventh most
significant bottleneck, the number of Integer ALUs,
and the average percentage of the eighth most
significant bottleneck, the number of LSU entries.
Although the seven most significant bottlenecks for
each benchmark are completely different, one
bottleneck, the number of ROB entries, is significant
for all benchmarks since it has a high percentage for
each benchmark; it has the highest percentage in 23 of
46 benchmark and input set pairs. Therefore, for these
benchmarks, the number of ROB entries is the biggest
performance bottleneck in the processor.
Therefore, of all these bottlenecks, the architect needs
to be especially careful when choosing a value for the
number of ROB entries since a poor choice can
significantly affect the processor’s performance. The
L2 cache size, L1 I-cache size and memory latency is
the most significant performance bottleneck for 10, 6
and 4 benchmarks, respectively. Although it is
significant for some benchmarks, the L1 I-cache size is
not one of the 5 most significant bottlenecks because it
does not have a high average percentage. These results
clearly show that the average percentage may not
reflect the significance of a bottleneck for a subset of
benchmarks and is best used only to gain a big-picture
view of the results.

Table 2. Plackett and Burman design results for all performance bottlenecks; sorted in descending order of the percentage of the total
variation accounted for by each bottleneck.

Parameter

gz
ip

-g
ra

ph
ic

gz
ip

-l
og

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

w
u

pw
is

e

sw
im

m
gr

id

ap
pl

u

vp
r-

ro
u

te

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
il

ab

m
es

a

ga
lg

el

ar
t-

11
0

ar
t-

47
0

m
cf

eq
u

ak
e

cr
af

ty

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

pa
rs

er

si
xt

ra
ck

eo
n

-c
oo

k

eo
n

-k
aj

iy
a

eo
n

-r
u

sh
m

ei
er

pe
rl

bm
k-

di
ff

m
ai

l

pe
rl

bm
k-

m
ak

er
an

d

pe
rl

bm
k-

sp
li

tm
ai

l 5
35

pe
rl

bm
k-

 s
pl

it
m

ai
l

70
4

pe
rl

bm
k-

 s
pl

it
m

ai
l 8

50

pe
rl

bm
k-

s
sp

li
tm

ai
l 9

57

ga
p

vo
rt

ex
-1

vo
rt

ex
-2

vo
rt

ex
-3

bz
ip

2-
gr

ap
h

ic

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

u
rc

e

ap
si

tw
ol

f

A
ve

ra
ge

ROB Entries 26.7 28.3 20.0 28.6 23.6 25.9 12.7 18.9 15.4 11.5 4.1 11.9 8.6 5.4 9.8 13.0 36.7 15.1 15.2 5.1 19.1 5.7 32.4 24.3 3.8 19.4 17.4 56.8 16.6 14.4 16.4 13.1 7.5 19.5 18.2 21.8 18.6 10.4 12.4 10.4 12.5 22.7 24.7 25.1 9.3 33.0 17.9

L2 Cache Size 1.1 1.5 0.8 1.3 1.1 4.1 2.2 5.8 2.8 17.8 18.4 14.9 12.8 15.7 13.4 0.8 12.7 28.0 28.0 35.4 1.5 1.1 17.1 24.0 3.7 2.4 16.1 0.1 0.4 0.4 0.5 1.8 0.7 0.5 0.9 1.6 1.7 2.3 5.2 4.5 5.3 11.1 10.0 14.7 30.0 8.5 8.4

Memory Latency First 0.5 0.7 0.0 0.8 0.3 12.9 29.9 14.7 22.3 15.6 9.5 7.0 5.9 7.7 6.1 0.5 6.2 12.0 12.0 27.8 39.6 0.7 10.0 15.1 9.2 16.5 7.0 0.3 0.2 0.2 0.2 0.6 0.1 0.7 0.8 0.7 1.1 5.7 3.1 2.4 3.2 4.3 3.7 5.8 15.5 12.0 7.6

L2 Cache Latency 2.3 6.0 5.6 2.9 6.3 4.2 0.2 6.3 1.3 1.4 0.8 5.7 4.7 1.6 6.4 16.0 1.6 1.5 1.5 0.6 2.4 18.5 1.3 1.2 0.7 9.8 5.1 6.8 15.6 16.2 15.4 11.8 21.0 2.9 4.2 4.3 7.3 14.2 11.9 13.1 12.1 1.3 1.7 2.0 5.3 5.0 6.3

BPred Type 16.6 8.7 24.4 10.7 17.5 1.8 0.3 0.7 0.6 3.9 1.1 4.8 4.0 1.9 4.7 0.9 0.1 0.1 0.1 0.3 0.5 1.8 1.4 0.7 0.7 0.7 7.8 0.4 2.7 3.0 3.6 8.8 4.3 12.7 12.5 16.2 14.5 4.2 4.4 3.5 4.1 9.6 10.4 5.7 1.3 0.1 5.2

L1 I-Cache Size 0.3 0.2 0.1 0.4 0.2 1.8 0.1 0.1 0.1 0.0 0.0 2.9 2.9 0.2 4.2 21.6 0.0 0.2 0.2 0.1 0.0 22.6 0.0 0.1 0.2 7.6 0.8 5.0 14.9 15.5 13.8 12.0 21.0 2.3 4.1 4.0 7.0 17.2 13.9 16.9 13.6 0.1 0.1 0.2 2.0 2.2 5.1

Int ALUs 16.4 12.4 8.3 18.2 10.0 2.4 0.0 0.0 0.0 1.2 0.7 3.4 2.4 1.2 2.6 1.4 0.2 0.3 0.3 0.2 0.0 1.6 2.6 0.6 0.0 0.5 5.6 0.1 2.2 1.9 2.2 4.8 1.4 3.0 3.4 10.0 8.5 2.7 6.1 4.5 5.9 10.7 11.2 9.3 1.6 1.1 4.0

LSU Entries 3.6 4.1 2.0 3.3 2.9 1.7 0.0 0.3 0.2 1.7 0.1 1.5 0.9 0.2 1.3 2.5 3.2 2.7 2.7 0.3 2.0 1.2 3.8 1.4 0.0 1.6 2.2 3.0 4.5 4.5 4.7 4.1 2.4 4.0 4.1 6.2 5.5 1.6 3.1 3.0 3.0 5.3 4.8 4.1 0.4 3.1 2.6

L1 D-Cache Latency 4.3 5.0 3.9 4.1 3.9 1.9 0.3 1.3 0.5 0.9 1.7 3.0 3.1 2.3 3.1 1.4 1.0 0.1 0.1 0.1 0.4 1.2 1.2 0.7 0.3 1.2 2.8 1.2 2.1 2.2 2.2 2.9 1.9 3.1 3.1 4.5 3.9 3.6 3.3 2.9 3.3 3.3 3.6 2.9 0.9 0.7 2.2

L1 I-Cache Block Size 0.1 0.0 0.0 0.1 0.0 1.8 0.3 2.3 1.2 0.1 1.1 1.7 2.1 1.3 2.4 5.4 0.1 0.1 0.1 0.0 0.0 5.4 0.1 0.1 0.6 5.7 0.3 2.4 4.8 5.3 4.8 2.1 3.8 1.3 1.6 0.8 1.3 3.8 1.7 2.3 1.6 0.1 0.1 0.1 0.8 0.8 1.6

Memory Bandwidth 0.1 0.2 0.0 0.3 0.1 2.2 4.2 2.1 3.2 2.4 1.7 1.7 1.5 1.6 1.6 0.5 1.1 2.2 2.2 4.2 5.1 0.4 2.0 2.2 1.4 3.0 1.5 0.0 0.1 0.1 0.1 0.4 0.2 0.0 0.0 0.2 0.4 1.8 1.3 1.2 1.4 0.9 0.8 1.2 2.6 2.3 1.4

L1 D-Cache Size 0.7 6.9 8.2 0.8 8.6 0.0 0.9 1.1 0.4 0.7 1.0 0.0 0.1 0.7 0.0 1.0 0.6 0.0 0.0 0.0 0.3 2.5 0.0 0.1 0.0 0.5 1.0 2.2 2.6 2.5 2.5 2.1 1.3 0.2 0.2 0.3 0.7 0.1 0.9 0.9 1.0 0.1 0.2 0.3 0.1 1.6 1.2

L1 D-Cache Block Size 0.2 0.1 0.2 0.4 0.0 2.3 5.6 3.5 5.4 0.1 5.2 2.4 4.2 6.0 3.0 0.0 0.7 0.1 0.1 0.1 1.8 0.0 0.9 0.7 3.3 1.4 0.6 0.2 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.1 0.0 0.1 0.0 0.3 0.5 1.1

D-TLB Size 1.2 0.5 0.0 1.9 0.3 1.5 0.8 2.5 1.3 5.1 1.2 1.0 1.0 1.4 0.9 0.5 0.5 0.5 0.5 0.2 1.0 0.2 0.6 0.8 1.0 0.5 0.8 0.1 0.1 0.0 0.1 0.2 0.7 5.0 4.2 0.5 0.3 0.5 0.3 0.4 0.3 1.6 1.1 1.2 1.0 1.0 1.0

I-TLB Page Size 0.3 0.5 0.3 0.4 0.7 0.4 0.5 0.0 0.5 7.7 0.6 0.0 0.3 0.6 0.1 0.3 5.1 0.7 0.7 0.6 0.1 0.4 0.0 0.2 4.8 0.1 0.2 0.0 0.0 0.0 0.0 0.5 0.1 1.9 1.3 0.0 0.3 0.1 0.7 0.9 0.8 0.9 0.5 1.0 0.6 0.8 0.8

L1 D-Cache Associativity 1.2 0.8 0.6 1.7 0.5 3.1 2.0 4.0 2.3 0.3 1.1 0.9 1.4 1.7 1.1 0.0 0.5 0.2 0.2 0.1 1.0 0.0 0.2 0.1 1.7 1.0 1.1 0.0 0.0 0.0 0.0 0.4 0.9 0.0 0.0 0.2 0.2 1.1 0.2 0.2 0.2 0.9 0.8 0.5 0.0 0.9 0.8

L2 Cache Associativity 0.4 0.7 0.4 0.7 0.4 2.0 2.3 1.1 1.8 0.5 1.9 1.5 1.9 2.0 1.7 0.1 0.6 0.1 0.1 0.1 0.3 0.0 0.4 0.7 3.4 1.3 0.7 0.0 0.0 0.0 0.0 0.4 0.1 0.6 0.5 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.0 0.7

Int ALU Latencies 2.7 3.6 3.4 2.2 3.1 0.0 0.2 0.1 0.5 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.2 0.1 0.1 0.1 0.5 0.6 0.0 0.0 1.3 1.2 0.3 0.4 0.5 0.3 0.7 0.9 0.6 0.0 0.0 0.6

BPred Misprediction Penalty 1.4 0.4 1.9 0.8 1.1 0.0 0.2 0.7 0.6 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 1.1 0.1 0.8 0.0 0.2 0.2 0.2 0.9 0.5 1.0 1.1 1.4 1.1 0.4 0.5 0.3 0.4 0.6 0.7 0.3 0.0 0.1 0.4

D-TLB Associativity 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.0 0.0 0.1 0.0 0.3 0.0 0.4 0.4 0.0 0.2 0.2 0.1 0.0 6.5 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.4 4.5 3.6 0.4 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.4

FP Square Root Latency 0.1 0.1 0.1 0.2 0.1 1.5 1.9 2.2 2.2 0.1 1.6 0.5 0.9 1.7 0.6 0.1 0.4 0.2 0.2 0.0 0.4 0.0 0.2 0.4 0.8 0.4 0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.4

L2 Cache Block Size 0.0 0.1 0.0 0.1 0.1 0.4 0.9 0.0 0.0 1.2 0.3 0.3 0.5 0.4 0.2 0.0 0.0 0.1 0.1 0.2 8.1 0.1 0.1 0.3 0.3 0.2 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.4 0.3 0.1 0.1 0.0 0.1 0.1 0.1 0.4 0.3 0.4 0.4 0.6 0.4

FP ALU Latencies 0.1 0.1 0.1 0.1 0.0 0.0 1.1 0.1 0.8 0.7 1.5 0.6 1.1 1.5 0.7 0.2 0.0 0.7 0.7 0.0 0.1 0.0 0.0 0.1 0.3 0.0 0.0 3.4 0.3 0.3 0.3 0.0 0.1 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3

Placeholder #2 0.3 0.3 0.2 0.4 0.3 0.4 0.3 0.6 0.7 0.2 0.6 0.7 0.7 0.8 0.6 0.0 0.1 0.4 0.3 0.1 0.0 0.1 0.2 0.2 0.5 0.4 0.3 0.0 0.2 0.1 0.3 0.3 0.0 0.4 0.4 0.3 0.2 0.1 0.2 0.1 0.2 0.4 0.4 0.4 0.1 0.1 0.3

FP Multiply Latency 0.2 0.2 0.2 0.2 0.2 0.5 0.0 0.2 0.3 0.2 0.1 0.3 0.3 0.2 0.4 0.4 0.0 0.2 0.2 0.0 0.1 0.5 0.1 0.3 1.0 0.6 0.1 2.5 0.5 0.4 0.4 0.4 0.1 0.0 0.0 0.1 0.2 0.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3

Placeholder #1 0.1 0.0 0.0 0.2 0.0 0.2 2.0 1.2 1.5 0.3 1.5 0.4 1.0 1.3 0.5 0.0 0.0 0.1 0.1 0.1 0.2 0.0 0.2 0.3 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.3

I-TLB Latency 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.2 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.4 2.1 0.1 0.1 0.0 0.1 0.2 0.0 0.1 2.4 0.2 0.0 0.1 0.2 0.2 0.3 0.2 0.3 0.9 0.8 0.1 0.1 0.1 0.0 0.2 0.0 0.1 0.1 0.2 0.1 0.2 0.3

Instruction Fetch Queue Entries 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.5 1.1 0.0 1.5 0.7 1.1 1.1 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.4 0.0 0.3 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.2

FP Mult/Div 0.0 0.1 0.1 0.0 0.1 0.3 0.5 0.2 0.6 0.1 0.9 0.5 0.6 1.0 0.5 0.1 0.4 0.1 0.1 0.2 0.1 0.1 0.5 0.4 0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.8 0.2

Int Mult/Div 0.0 0.0 0.1 0.0 0.1 0.0 1.3 0.8 1.0 0.0 1.1 0.3 0.7 0.9 0.3 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.8 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.2 0.3 0.0 0.0 0.0 0.2 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.2

Return Address Stack Entries 0.0 0.1 0.0 0.0 0.0 0.2 0.4 0.7 0.8 0.0 0.5 0.4 0.5 0.5 0.5 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.1 0.8 0.4 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.3 0.4 0.1 0.1 0.3 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.2

L1 I-Cache Associativity 0.5 0.3 0.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.0 0.7 0.1 0.0 0.0 0.0 0.8 0.0 0.2 0.1 0.3 0.2 0.3 0.3 0.3 0.4 0.8 0.8 0.8 0.0 0.0 0.2

FP ALUs 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.2 0.5 0.0 0.9 0.1 0.4 0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.5 0.0 0.1 0.8 0.1 0.0 0.4 0.6 0.6 0.6 0.3 0.0 0.1 0.2 0.0 0.1 0.0 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.2

BTB Entries 0.2 0.0 0.1 0.3 0.0 0.8 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.5 0.0 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.1 0.0 0.5 0.1 0.1 0.1 0.4 0.3 0.3 0.0 0.0 0.2

L1 I-Cache Latency 0.0 0.1 0.2 0.0 0.2 0.3 1.1 0.3 0.9 0.0 0.7 0.1 0.3 0.9 0.2 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.6 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.2

Int Divide Latency 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.1 0.4 0.0 0.0 0.0 0.2 0.1 0.1 0.6 0.7 0.5 0.1 0.0 0.9 0.9 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1

FP Divide Latency 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.4 0.1 0.2 0.2 0.0 0.0 0.2 0.0 0.0 0.4 0.1 0.0 0.1 0.4 0.4 0.3 0.0 0.3 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.8 0.1

Memory Ports 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1

Int Multiply Latency 0.0 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.2 0.1 0.0 0.4 0.4 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

I-TLB Associativity 0.0 0.0 0.0 0.1 0.0 0.5 0.0 0.2 0.1 0.0 0.2 0.1 0.2 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

I-TLB Size 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1

BTB Associativity 0.0 0.1 0.2 0.0 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Speculative Branch Update 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Plackett and Burman design results for all energy consumption bottlenecks; sorted in descending order of the percentage of
the total variation accounted for by each bottleneck.

Parameter

gz
ip

-g
ra

ph
ic

gz
ip

-l
og

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

w
u

pw
is

e

sw
im

m
gr

id

ap
pl

u

vp
r-

ro
u

te

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
il

ab

m
es

a

ga
lg

el

ar
t-

11
0

ar
t-

47
0

m
cf

eq
u

ak
e

cr
af

ty

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

pa
rs

er

si
xt

ra
ck

eo
n

-c
oo

k

eo
n

-k
aj

iy
a

eo
n

-r
u

sh
m

ei
er

pe
rl

bm
k-

di
ff

m
ai

l

pe
rl

bm
k-

m
ak

er
an

d

pe
rl

bm
k-

sp
li

tm
ai

l 5
35

pe
rl

bm
k-

 s
pl

it
m

ai
l

70
4

pe
rl

bm
k-

 s
pl

it
m

ai
l 8

50

pe
rl

bm
k-

s
sp

li
tm

ai
l 9

57

ga
p

vo
rt

ex
-1

vo
rt

ex
-2

vo
rt

ex
-3

bz
ip

2-
gr

ap
h

ic

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

u
rc

e

ap
si

tw
ol

f

A
ve

ra
ge

BTB Associativity 13.6 16.8 14.6 15.4 15.1 16.7 9.1 12.6 10.3 13.9 10.3 17.0 15.7 11.5 16.7 12.5 10.3 6.2 6.3 8.0 11.6 11.6 13.4 11.8 7.2 14.4 16.8 13.2 13.3 12.7 13.9 15.7 13.3 13.0 13.9 15.4 16.3 16.1 17.1 16.3 17.0 14.0 14.5 15.5 14.6 15.2 13.5

BTB Entries 14.3 17.8 16.3 15.6 16.3 11.6 5.4 8.1 4.9 11.9 5.3 14.3 11.8 7.0 13.3 13.5 9.8 4.5 4.6 6.8 11.4 13.2 11.6 10.1 4.1 12.7 15.6 13.4 14.5 14.2 14.5 16.0 14.1 14.0 14.9 15.8 16.9 15.8 17.6 17.1 17.4 12.7 13.7 14.6 13.1 15.5 12.6

BPred Type 16.1 9.6 22.2 11.2 17.6 3.6 0.3 0.6 0.5 7.0 2.2 7.7 6.7 3.8 7.7 1.4 0.0 0.0 0.0 0.7 0.3 2.9 2.3 1.2 0.8 0.5 11.5 0.2 4.5 5.3 5.8 11.5 5.9 14.0 13.6 15.9 14.8 6.6 7.6 6.7 7.3 13.8 14.3 9.3 2.8 0.1 6.5

Memory Latency First 0.0 0.1 0.0 0.1 0.0 7.2 23.3 10.4 17.0 7.1 6.0 3.2 3.1 4.7 2.9 0.3 3.5 8.2 8.2 18.3 24.0 0.5 4.6 8.5 5.9 12.1 1.8 0.1 0.1 0.1 0.2 0.2 0.0 0.3 0.3 0.2 0.3 2.8 1.4 1.1 1.4 1.3 1.1 2.0 8.2 6.3 4.5

L2 Cache Latency 0.5 1.8 1.3 0.7 1.6 3.0 0.5 7.7 2.1 1.9 1.8 4.5 4.4 2.4 5.3 12.5 2.5 3.4 3.4 2.0 1.6 13.7 2.0 2.7 0.3 9.1 2.3 6.3 10.7 11.1 10.2 6.2 13.1 0.5 0.9 1.2 2.6 7.5 6.1 7.4 6.3 0.8 0.9 1.4 6.8 6.1 4.4

L1 I-Cache Size 11.9 11.4 9.1 11.4 10.2 3.0 2.2 1.6 2.4 3.8 3.3 1.8 1.4 3.1 0.9 2.6 3.5 1.0 1.0 0.8 1.9 4.6 6.8 3.8 4.0 0.5 7.0 2.8 0.3 0.5 0.1 0.0 1.6 3.5 2.4 4.3 2.1 0.1 0.0 0.2 0.0 10.4 10.2 8.6 0.2 0.5 3.5

L2 Cache Size 5.3 5.3 4.1 5.5 4.7 2.3 1.0 0.3 0.7 0.2 2.4 0.0 0.0 0.9 0.0 3.5 0.3 12.3 12.2 13.5 2.2 2.6 0.2 3.1 0.0 2.3 0.3 8.0 6.0 5.8 5.9 4.3 5.1 5.0 4.6 4.8 4.7 4.3 1.7 1.8 1.5 0.5 0.7 0.0 3.5 0.2 3.3

ROB Entries 0.4 0.6 0.0 0.8 0.1 5.1 3.9 6.8 5.0 0.8 0.2 0.4 0.2 0.2 0.2 1.7 16.4 8.2 8.2 1.9 5.5 0.1 9.2 9.0 0.9 4.7 0.5 16.0 1.6 0.9 1.1 0.5 0.2 0.4 0.3 0.6 0.5 0.1 0.4 0.2 0.4 1.1 1.1 2.4 1.3 11.0 2.9

L1 D-Cache Size 2.4 0.2 0.0 2.2 0.0 6.3 5.7 0.9 5.3 1.5 7.2 3.8 5.2 6.9 4.4 1.7 1.5 1.2 1.2 1.5 2.8 0.1 4.4 2.5 2.9 2.9 1.6 2.0 1.3 1.4 1.6 1.2 1.2 2.5 2.9 4.3 3.3 3.7 1.8 1.9 1.7 4.3 3.6 3.0 1.9 1.4 2.6

L1 D-Cache Block Size 0.1 0.1 0.1 0.1 0.0 1.4 5.0 3.0 5.3 0.0 5.5 1.8 3.2 5.5 2.2 0.0 1.2 0.3 0.3 0.4 2.0 0.1 1.0 1.2 3.6 1.1 0.5 0.4 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.1 0.1 0.5 0.6 1.0

Memory Bandwidth 0.1 0.1 0.0 0.1 0.1 1.6 3.2 1.6 2.8 1.7 1.5 0.9 0.9 1.3 0.8 0.1 1.3 3.0 3.0 4.0 2.5 0.0 2.0 2.3 2.2 1.7 0.6 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.6 0.6 0.4 0.6 0.6 0.5 0.9 1.8 1.9 1.0

Int ALUs 3.1 2.5 0.9 4.2 1.5 0.8 0.1 0.1 0.0 0.0 0.2 0.8 0.8 0.5 0.6 0.2 0.1 0.0 0.0 0.1 0.3 0.3 0.7 0.0 0.1 0.0 0.9 0.1 0.5 0.4 0.5 1.4 0.1 0.9 0.9 2.8 2.3 0.4 1.4 0.9 1.4 2.3 2.3 2.2 0.1 0.1 0.9

FP ALUs 1.3 1.0 0.7 1.3 0.8 0.9 1.5 1.0 1.3 1.0 2.5 1.3 1.7 2.3 1.4 0.0 1.8 0.5 0.5 0.6 0.7 0.1 1.2 1.5 2.3 0.1 1.4 0.0 0.0 0.0 0.0 0.3 0.4 0.4 0.3 0.7 0.6 0.6 0.3 0.2 0.3 1.3 1.2 1.1 0.7 0.5 0.9

L1 I-Cache Block Size 0.0 0.0 0.0 0.0 0.0 0.7 0.0 1.0 0.3 0.0 0.5 0.6 0.9 0.6 1.1 3.6 0.0 0.2 0.2 0.0 0.2 3.6 0.0 0.0 0.2 2.9 0.1 1.4 3.0 3.5 3.0 1.1 2.6 1.0 1.2 0.4 0.6 1.9 0.7 1.0 0.7 0.0 0.0 0.0 0.4 0.2 0.9

L1 D-Cache Latency 0.6 0.7 0.5 0.6 0.5 1.0 0.6 0.8 0.7 0.4 1.3 1.5 1.8 1.6 1.6 0.8 0.5 0.0 0.0 0.0 0.3 1.0 0.3 0.3 0.2 1.1 0.7 0.4 1.0 1.2 1.1 1.2 1.0 1.0 1.1 1.2 1.2 2.2 1.7 1.6 1.7 0.6 0.7 0.6 0.6 0.3 0.9

D-TLB Size 0.5 0.2 0.1 0.7 0.2 1.1 1.0 2.0 1.2 2.9 0.8 0.4 0.5 0.8 0.4 0.2 0.3 0.4 0.4 0.2 1.1 0.1 0.4 0.6 0.5 0.2 0.5 0.0 0.0 0.0 0.0 0.0 0.3 2.5 2.1 0.3 0.2 0.2 0.1 0.2 0.1 0.9 0.6 0.6 0.7 0.3 0.6

I-TLB Page Size 0.1 0.2 0.1 0.1 0.3 0.2 0.4 0.0 0.4 4.6 0.6 0.0 0.2 0.6 0.0 0.5 4.1 0.6 0.6 0.5 0.1 0.6 0.0 0.2 3.9 0.0 0.1 0.1 0.1 0.1 0.1 0.5 0.2 0.9 0.7 0.0 0.2 0.0 0.6 0.7 0.6 0.4 0.2 0.5 0.5 0.6 0.6

FP Multiply Latency 0.3 0.2 0.3 0.3 0.3 0.2 0.0 0.4 0.3 1.0 0.4 0.7 0.8 0.6 0.8 0.9 0.3 0.2 0.1 0.1 0.0 1.0 0.1 0.4 2.1 0.6 0.3 2.2 0.8 0.8 0.8 0.7 0.4 0.0 0.0 0.2 0.4 0.1 0.5 0.7 0.6 0.3 0.3 0.4 0.6 0.6 0.5

L2 Cache Block Size 0.2 0.3 0.1 0.2 0.3 0.0 1.0 0.0 0.1 1.0 0.3 0.4 0.5 0.4 0.4 0.1 0.2 0.6 0.5 0.3 4.3 0.2 0.5 0.6 0.5 0.1 0.2 0.0 0.4 0.4 0.4 0.4 0.2 0.5 0.4 0.4 0.3 0.0 0.4 0.3 0.4 0.8 0.7 0.8 0.4 0.6 0.5

LSU Entries 0.0 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.1 0.0 0.0 0.1 0.9 0.8 1.4 1.3 0.1 0.4 0.4 0.8 0.2 0.2 0.4 0.0 0.5 1.3 1.3 1.3 0.7 0.5 0.3 0.4 0.5 0.6 0.1 0.4 0.5 0.4 0.4 0.2 0.3 0.0 1.0 0.4

L2 Cache Associativity 0.4 0.5 0.3 0.5 0.4 0.8 1.1 0.1 0.7 0.1 1.1 0.7 0.9 1.1 0.8 0.3 0.1 0.1 0.1 0.0 0.0 0.1 0.2 0.3 1.6 0.2 0.5 0.1 0.0 0.0 0.0 0.3 0.1 0.9 0.8 0.5 0.2 0.1 0.1 0.1 0.2 0.3 0.3 0.2 0.0 0.1 0.4

FP Mult/Div 0.0 0.1 0.1 0.0 0.1 0.5 1.1 0.4 1.1 0.1 1.4 0.5 0.7 1.2 0.5 0.0 0.5 0.1 0.1 0.5 0.3 0.0 0.6 0.7 0.0 0.3 0.1 0.3 0.0 0.0 0.0 0.0 0.2 0.7 0.7 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.3 0.9 0.3

L1 D-Cache Associativity 0.3 0.2 0.1 0.4 0.1 0.9 0.9 2.5 1.3 0.0 0.3 0.0 0.2 0.4 0.1 0.1 0.2 1.0 1.0 0.9 0.4 0.1 0.0 0.0 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.4 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.2 0.2 0.3

L1 I-Cache Associativity 0.7 0.8 0.5 0.7 0.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.3 0.3 0.1 0.1 0.2 0.6 0.2 0.3 0.1 0.8 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.2 0.5 0.3 0.1 0.3 0.2 0.3 0.9 0.9 1.0 0.0 0.1 0.3

BPred Misprediction Penalty 0.4 0.1 0.4 0.2 0.2 0.2 0.2 1.3 0.8 0.1 0.3 0.0 0.1 0.1 0.0 0.4 0.7 0.5 0.4 0.1 0.1 0.2 0.0 0.3 1.5 0.7 0.2 1.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.5 0.3

D-TLB Associativity 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.4 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.2 0.0 0.1 0.0 0.0 0.0 4.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.1 2.5 2.2 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.3

Placeholder #1 0.0 0.0 0.1 0.0 0.1 0.3 1.5 1.1 1.4 0.3 0.7 0.2 0.5 0.7 0.3 0.1 0.0 0.4 0.4 0.1 0.4 0.1 0.1 0.2 0.5 0.8 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.3

Int Divide Latency 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.2 0.3 0.6 0.1 0.1 0.4 0.1 0.3 0.4 0.2 0.2 0.4 0.3 0.8 0.4 0.4 0.1 0.1 0.3 0.1 0.7 0.8 0.7 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.4 0.4 0.1 0.0 0.2

Instruction Fetch Queue Entries 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.2 0.0 1.2 0.9 1.1 1.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.7 0.4 0.0 0.0 0.0 0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.4 0.1 0.2 0.1 0.1 0.1 0.2

FP ALU Latencies 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.3 0.3 1.2 0.3 0.6 1.0 0.4 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 2.6 0.4 0.4 0.3 0.0 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Speculative Branch Update 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.3 0.6 0.4 0.3 0.1 0.1 0.2 0.1 0.0 0.3 0.6 0.6 0.6 0.4 0.0 0.3 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.3 0.2

FP Square Root Latency 0.0 0.0 0.1 0.0 0.0 0.2 0.5 0.6 0.6 0.2 0.2 0.0 0.0 0.2 0.0 0.1 0.2 0.4 0.4 0.6 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2

Int Multiply Latency 0.0 0.0 0.1 0.0 0.1 0.2 0.4 0.3 0.5 0.0 0.2 0.0 0.0 0.1 0.0 0.2 0.1 0.3 0.3 0.6 0.4 0.4 0.0 0.4 0.6 0.1 0.0 0.0 0.3 0.3 0.3 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2

I-TLB Latency 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.0 0.1 0.0 0.0 0.1 0.0 0.1 1.4 0.0 0.0 0.1 0.0 0.1 0.0 0.1 1.3 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.6 0.6 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2

Int Mult/Div 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.9 0.7 0.0 0.3 0.1 0.2 0.3 0.1 0.1 0.0 0.5 0.5 0.1 0.0 0.0 0.2 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.2

Int ALU Latencies 0.5 0.7 0.8 0.3 0.7 0.0 0.1 0.2 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.3 0.3 0.1 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.3 0.1

Return Address Stack Entries 0.0 0.1 0.0 0.0 0.0 0.1 0.3 0.4 0.4 0.0 0.5 0.3 0.3 0.4 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.9 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Placeholder #2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.4 0.2 0.3 0.4 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.8 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.2 0.2 0.0 0.0 0.1

I-TLB Size 0.1 0.1 0.2 0.0 0.2 0.0 0.1 0.5 0.2 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.1 0.1 0.1 0.1 0.0 0.4 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.1

Memory Ports 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.6 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.5 0.1 0.0 0.0 0.2 0.3 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1

L1 I-Cache Latency 0.0 0.1 0.1 0.0 0.1 0.1 0.4 0.0 0.4 0.0 0.3 0.1 0.2 0.4 0.1 0.1 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

FP Divide Latency 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 1.0 0.1

I-TLB Associativity 0.1 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 2 also clearly shows the effect that each
benchmark has on the processor. The “effect” that a
benchmark has on the processor can be defined as the
set of bottlenecks that the benchmark induces in the
processor. For example, for a compute-intensive
benchmark, the number of functional units and the
branch prediction accuracy will probably be significant
performance bottlenecks. On the other hand, for a
memory-intensive benchmark, the size of the L2 cache
and the memory latency may be the significant
bottlenecks. An example of a compute-intensive
benchmark is gzip-graphic since combined percentages
of the number of integer ALUs and the branch
predictor type (i.e., branch prediction accuracy)
accounts for over 33% of the total variation in the CPI.
An example of a memory-intensive benchmark is mcf
since the combined percentage of the L2 cache size and
the memory latency is over 63%.

5.2 Processor Energy Consumption Bottlenecks
From Table 3, we can see that the most significant

performance and energy consumption bottlenecks are
quite similar. However, although the size and the
associativity of the branch target buffer (BTB) are the
two most significant energy consumption bottlenecks,
both are insignificant as performance bottlenecks.
Also, the number of ROB entries, which is the most
significant performance bottleneck, is only the eighth
most significant energy bottleneck. While BTB size
and associativity accounts for the highest average
percentage of the total power consumption variation,
its true significance is not as dramatic as Table 3 would
indicate. The reason for this apparent discrepancy is
that the high value for the BTB associativity (fully-
associative) forces the BTB to dissipate a
disproportionately high amount of power, while not
significantly affecting the performance. In other
words, while using large fully-associative BTB inflates
the importance of the BTB as an energy consumption
bottleneck, the BTB associativity does not affect the
significance of the BTB as a performance bottleneck.

The other significant parameters for performance
and energy consumption are similar; five of the seven
most significant parameters for performance and
energy are the same (branch predictor type, memory
latency, L2 cache latency, L2 cache size, and L1 I-
cache size). Although bottlenecks such as the memory
and L2 cache latency do not directly dissipate power,
they still are important energy consumption bottlenecks
since the processor still dissipates static power when
servicing memory accesses. Therefore, higher
latencies increase the overall energy consumption by
increasing the amount of static energy consumption.

6 Similarity of SPEC CPU 2000 Bottlenecks
Understanding the similarity between benchmarks

is extremely important when constructing a benchmark
suite or when selecting a representative subset from a
benchmark suite. Obviously, selecting benchmarks
that are not very distinct may overestimate or
underestimate the performance of an optimization and
lead to misleading conclusions. On the other hand,
simulating redundant benchmarks will significantly
increase the time and effort required for performance
evaluation.

To quantify the similarity between benchmarks, a
computer architect can using several different criteria,
such as the execution time, instruction mix, and cache
miss rate. In this section, we measure the similarity
between benchmarks in SPEC CPU 2000 suite based
on the degree to which they stress the same processor
bottlenecks. In other words, we consider two
benchmarks to be similar if they stress the same
performance and energy consumption bottlenecks to
the same degree. In order to include the combined
effect of performance and energy consumption, we use
the energy-delay product (EDP), which is an energy-
efficiency metric that combines performance with
energy consumption [1]. EDP is the product of the CPI
and EPI.

After calculating the P&B magnitudes for each
benchmark based on their EDPs, we rank each
bottleneck based on its P&B magnitude, where the
bottleneck with the largest magnitude is assigned a
rank of 1 and the smallest is assigned a rank of 43.
Then, we vectorize their ranks such that a vector with
43 elements corresponding to the ranks of the EDP
bottlenecks represents each benchmark. (Our previous
experience indicated that using ranks instead of
magnitude does not distort the results.) Since the
dimensionality of the rank vector is very large, it is
difficult to look at the data and draw meaningful
conclusions from it. Therefore, we use PCA to reduce
the dimensionality of the data set and remove
correlation while retaining most of the original
information. PCA computes new variables, called
principal components, which are linear combinations
of the original variables, such that the principal
components are uncorrelated [2]. We retain the
principal components that together account for at least
80% variance of the original data.

After using PCA, we use the K-means clustering
algorithm [9] to cluster the benchmarks based on the
similarity of their EDP bottlenecks. The K-means
clustering algorithm groups the benchmarks into K
distinct clusters. Since not all values of K fit the input
data set well, we explore various values of K in order
to find the optimal clustering for the given data set.
Additionally, since the quality of the K-means
clustering results depend on the initial placement of
cluster centers, we use 100 different initial cluster
starting points for each value of K.

Table 4: Optimal groups of clusters for the 46 benchmark-input pairs based on their similarity of
energy-delay product bottlenecks.

Cluster Benchmarks
1 mesa, crafty, eon-cook, eon-kajiya, eon-rushmeier, perlbmk-makerand
2 perlbmk-splitmail_535, perlbmk-splitmail_704
3 perlbmk-diffmail, vortex-1, vortex-2, vortex-3
4 wupwise, swim, mgrid, equake, fma3d, sixtrack, gap
5 applu, gcc-166, gcc-integrate
6 gzip-graphic, gzip-program, gzip-random, gzip-source, perlbmk-splitmail_850, perlbmk-splitmail_957
7 gcc-200, gcc-expr, gcc-scilab
8 gzip-log, parser, bzip2-graphic, bzip2-program, bzip2-source
9 mcf, facerec, ammp, twolf, apsi

10 vpr-route, galgel, art-110, art-470
11 lucas

Figure 1. Dendrogram showing complete linkage distance for the 46 benchmark-input pairs based
on their similarity of energy-delay product bottlenecks.

After clustering, we use the Bayesian Information
Criterion (BIC) to determine the K-value with the best
fit. For a value of K, the BIC score indicates the
probability that the data belongs to K different normal
distributions. Since a higher BIC score indicates a
greater probability of a good fit for that value of K, we
select the result that yields the highest BIC score as the
optimal value of K [14]. After applying the
aforementioned steps, we found that K=11, or 11
benchmark clusters, was the best fit for the bottleneck
characterization data.

In order to visualize the relative positions of the

benchmarks in the workload space and the distance
between them, we also present a tree, or dendrogram,
using hierarchical clustering. The vertical scale of the
dendrogram lists the benchmark, while the horizontal
scale corresponds to the linkage distance obtained from
hierarchical clustering analysis. The shorter the
linkage distance the closer the benchmarks are to each
other in the workload space.

Table 4 shows this clustering while Figure 1
presents the dendrogram of this clustering. In Table 4,
the benchmarks in boldfaced font are the ones that are
closest to the center of their respective cluster. Note

that selecting the boldfaced benchmark from each
cluster forms a representative subset of the SPEC CPU
2000 benchmarks based on their EDP bottlenecks.
Computer architects can use this subset in lieu of the
entire suite to reduce the simulation time.

In order to understand how the benchmarks are
similar/dissimilar, we first categorized the bottlenecks
into four different categories related to (1) Data
memory (e.g., L1 D-cache size, L1 D-cache latency,
etc.), (2) Control flow (e.g., Branch misprediction
penalty, number of BTB entries, etc.), (3) Instruction
memory (e.g., L1 I-cache size, L1 I-cache latency,
etc.), and (4) Processor core pipeline (Number of
Integer ALUs, number of ROB entries, etc.), and then
clustered the benchmarks considering only the
bottlenecks from one category at a time.

Due to space constraints, we do not present the
results for each of these categories. However, we use
this information to explain why specific benchmarks
were clustered together using the overall benchmark
characteristics. From these results, we make a number
of interesting observations related to the similarity
between the input sets of the benchmarks, across
benchmarks, and the benchmarks that emerge as
outliers in terms of how they stress the performance
and power bottlenecks with respect to the EDP
efficiency metric.

6.1 Similarity Between Input Sets
In this section we discuss the similarity between

the processor bottlenecks that various input sets invoke
from a particular benchmark.

All the 3 inputs sets for vortex stress the data
memory, control flow, and instruction memory
bottlenecks almost identically. However, vortex-2
stresses the processor core pipeline bottlenecks slightly
differently (higher sensitivity to ALU latencies) as
compared to the other two input sets. However, in
general, the three different input sets for vortex exhibit
very similar behavior, as do the three input sets of
bzip2. Similarly, for art, the ranks of bottlenecks for
the both input sets are almost identical. The same is
true for the three input sets of eon. From these
observations we can conclude that having more than
one input set for vortex, bzip2, art, and eon does not
expose a different bottlenecks that are fundamentally
different.

On the other hand, the behavior of gzip, gcc, and
perlbmk is heavily dependent on the input set. The
{graphic, program, random, source} input sets for gzip
exhibit similar behavior, whereas the log input set
invokes a different behavior. More specifically, the log
input does not stress the branch predictor as much as
the other four input sets. gcc stresses the processor
bottlenecks in two different ways. For the {166,
integrate} input sets, the L1 I-cache size bottleneck is

very significant, while the {200, expr, scilab} input
sets are more sensitive to the branch predictor accuracy
bottleneck. The bottlenecks stressed by perlbmk are
also highly dependent on the input set. The
splitmail_850 and splitmail_957 input sets are similar
to each other while the same is true for the
splitmail_535 and splitmail_704 input sets. The
splitmail_850 and splitmail_957 input sets stress the
ALU latencies and L2 cache related bottlenecks more
than the splitmail_535 and splitmail_704 input sets.
The other two input sets, diffmail and makerand, differ
in how they stress the data memory bottlenecks; the
makerand input set stresses the L1 D-cache size and L2
cache latency bottlenecks, while for diffmail L2 cache
size is one of the bottlenecks that affects performance
the least. The diffmail and makerand input stress the
L1 I-cache bottlenecks significantly more than the
other input sets of perlbmk. Therefore, depending on
the input set, the input sets for perlbmk exposes 4
different sets of bottlenecks.

6.2 Similarity Between Benchmarks
The clusters in Table 4 show the similarity

between various benchmarks across all workload
characteristics. However, benchmarks can be more
similar for a particular set of characteristics than
others. In this section, we explain why a group of
benchmarks are clustered together or appear in
different clusters.

art, mcf, ammp, and twolf are similar to each other
based on the data memory bottlenecks. These are the 4
benchmarks in SPEC CPU 2000 that heavily stress the
data memory bottlenecks. Surprisingly, art and mcf –
the benchmarks with the highest L1 D-cache miss rates
in the entire suite – do not appear in the same cluster.
While art and mcf stress data memory bottlenecks and
control flow related bottlenecks similarly, they stress
the instruction memory and processor core pipeline
bottlenecks differently. Therefore, these two
benchmarks appear in different clusters when all
bottlenecks are used for clustering.

gzip-log stresses the bottlenecks in the same way
as all input sets of bzip2. While gzip and bzip2 are
both compression algorithms, the other four input sets
of gzip, {graphic, program, random, source}, and
bzip2 stress the bottlenecks differently enough that
they belong to different clusters.

mesa and crafty form a very tight cluster and show
very similar behavior across the 4 different categories
of bottlenecks. gzip, parser, perlbmk, vortex and bzip2
have similar behavior for the control flow bottlenecks,
in that they heavily stress the branch predictor
bottlenecks in the processor.

 The benchmarks mesa, crafty, fma3d, eon,
perlbmk, gap, and vortex all stress the instruction
memory hierarchy, but end up in different groups

depending on whether they are sensitive to L1 I-cache
latency, L1 I-cache size, etc.

6.3 Outlier Benchmark s
From the clustering results in Table 4, we observe

that compared to the other benchmarks, lucas is very
unique as it is the sole member of Cluster 11. Unlike
other benchmarks, lucas only stresses the number of
FP ALUs and the FP Multiply latency bottlenecks. All
other processor core pipeline bottlenecks do have much
impact on the performance and energy consumption.
In stark contrast to the other benchmarks, the number
of ROB entries is insignificant for lucas, while it is
usually of the most significant bottlenecks for the other
benchmarks. For the control flow bottlenecks, the
branch misprediction penalty is important, but the
number of BTB entries is not. Finally, the memory
latency bottleneck is more important than the L2 cache
latency bottleneck, which suggests that the L1 cache
misses also result in L2 cache misses, thus making the
memory latency a significant bottleneck.

Although wupwise appears in the same cluster as
swim, mgrid, equake, fma3d, sixtrack, and gap when
clustered based on all bottlenecks, it is an outlier when
only considering the processor core pipeline
bottlenecks. The reason for this is that the Integer and
FP ALU bottlenecks are the highest ranked bottlenecks
(have almost no impact on performance), which makes
it an aberration compared to other benchmarks.

In conclusion, the results in this section show that
characterizing and clustering benchmarks based on
their bottlenecks can help computer architects gain a
better understanding of the benchmark behavior and its
similarity to other benchmarks. Computer architects
can use this information when constructing benchmark
suites and/or finding a representative subset of an
existing suite.

7 Summary
One the key characteristics of a benchmark are the

bottlenecks that it exposes when running on a
processor. Since the performance of the processor is
limited by its performance bottlenecks, and likewise
for the energy consumption bottlenecks, determining
which bottlenecks a benchmark exposes is important.

In this paper, we use the Plackett and Burman
design to efficiently determine the performance and
energy consumption bottlenecks in the SPEC CPU
2000 benchmark suite. Our results show that the
number of ROB entries is the most important
performance bottleneck, while the L2 cache size, L1 I-
cache size, and memory latency are also significant.
With the exception of the number of BTB entries and
associativity, the energy consumption bottlenecks are
very similar to that of the performance bottlenecks.
The large “+1” value of the number of BTB entries and

BTB associativity overinflates the importance of these
two parameters as energy consumption bottlenecks.

Our clustering results show that lucas is the most
unique benchmark based on its performance
bottlenecks, which makes it a valuable addition to the
SPEC CPU 2000 benchmark suite. Also, gzip, gcc,
and perlbmk are the only benchmarks in the SPEC
CPU2000 benchmark suite that expose dramatically
different sets of performance bottlenecks depending on
the input sets used. Finally, we provide subset of
benchmarks that are representative of the performance
and energy consumption bottlenecks stressed by the
entire benchmark suite. Computer architects and
researchers can use this as a guideline to subset the
benchmark suite if the time required to simulate all the
benchmarks is prohibitively high.

Acknowledgements
This work was supported in part by IBM, Intel, the
University of Minnesota Digital Technology Center,
the Minnesota Supercomputing Institute, NSF grant
0429806, IBM Corporation through a CAS award,
Ghent University, and the European HiPEAC network
of excellence. Lieven Eeckhout is a Postdoctoral
Fellow of the Fund for Scientific Research – Flanders
(Belgium) (F.W.O. Vlaanderen).

References
[1] D. Brooks, P. Cook, P. Bose, S. Schuster, H.

Jacobson, P. Kudva, A. Buyuktosunoglu, J.
Wellman, V. Zyuban, and M. Gupta, “Power-
Aware Microarchitecture: Design and Modeling
Challenges for Next-Generation
Microprocessors,” IEEE Micro, Vol. 20, No. 6,
November/December 2000, pp. 26-44.

[2] G. Dunteman, “Principal Component Analysis,”
Sage Publications, 1999.

[3] L. Eeckhout, H. Vandierendonck, and K. De
Bosschere, “How Input Data Sets Change
Program Behaviour,” Workshop on Computer
Architecture Evaluation using Commercial
Workloads, 2002.

[4] L. Eeckhout, H. Vandierendonck, and K. De
Bosschere, “Workload Design: Selecting
Representative Program-Input Pairs,”
International Conference on Parallel
Architectures and Compilation Techniques,
2002.

[5] L. Eeckhout, R. Sundareswara, J. Yi, D. Lilja,
and P. Schrater, “Accurate Statistical
Approaches for Generating Representative
Workload Compositions,” International
Symposium on Workload Characterization,
2005.

[6] B. Fields, S. Rubin, R. Bodik, “Focusing
Processor Policies via Critical-Path Prediction,”

International Symposium on Computer
Architecture, 2001.

[7] B. Fields, R. Bodik, and M. Hill, “Slack:
Maximizing Performance under Technological
Constraints,” International Symposium on
Computer Architecture, 2002.

[8] B. Fields, R. Bodik, M. Hill, and C. Newburn,
“Using Interaction Cost for Microarchitectural
Bottleneck Analysis,” International Symposium
on Microarchitecture, 2003.

[9] A. Jain and R. Dubes, “Algorithms for
Clustering Data,” Prentice Hall, 1988.

[10] D. Lilja, “Measuring Computer Performance,”
Cambridge University Press, 2000.

[11] D. Montgomery, “Design and Analysis of
Experiments,” Third Edition, Wiley 1991.

[12] A. Phansalkar, A. Joshi, L. Eeckhout, L. John,
“Measuring Program Similarity: Experiments
with SPEC CPU Benchmark Suites,”
International Symposium on Performance
Analysis of Systems and Software, 2005.

[13] R. Plackett and J. Burman, “The Design of
Optimum Multifactorial Experiments,”
Biometrika, Vol. 33, Issue 4, June 1946, Pages
305-325.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B.
Calder, “Automatically Characterizing Large
Scale Program Behavior,” International
Conference on Architectural Support for

Programming Languages and Operating
Systems, October 2002.

[15] E. Tune, D. Liang, B. Calder, and D. Tullsen
“Dynamic Prediction of the Critical
Performance Path,” International Symposium on
High-Performance Computer Architecture,
2001.

[16] E. Tune, D. Tullsen, and B. Calder “Quantifying
Instruction Criticality,” International Conference
on Parallel Architectures and Compilation
Techniques, 2002.

[17] H. Vandierendonck and K. De Bosschere,
“Many Benchmarks Stress the Same
Bottlenecks,” Workshop on Computer
Architecture Evaluation using Commercial
Workloads, 2004.

[18] http://www.eecs.umich.edu/~chriswea/
benchmarks/SPEC2000.html

[19] R. Wunderlich, T. Wenisch, B. Falsafi, and J.
Hoe, “SMARTS: Accelerating
Microarchitectural Simulation via Rigorous
Statistical Sampling,” International Symposium
on Computer Architecture, 2003.

[20] J. Yi, D. Lilja, and D. Hawkins, “A Statistically
Rigorous Approach for Improving Simulation
Methodology,” International Symposium on
High-Performance Computer Architecture,
2003.

