

Outline

* The trouble with feedback
» Correspondence Values

» Coverage

» Concluding remarks

The trouble with feedback

» Profile feedback uses a training run of the code

* At minimum improves decisions about:
> Basic block layout
> |nlining of routines

* But....

The trouble with feedback

>
>

* But....

> |t takes twice as long to build
> Requires 'representative’ training data

The trouble with feedback

Out of scope

> ol I on 7a Ly

> Requires<representative™training data

x But what does this really mean?

Method

» Using SPEC CPU2000 benchmark suite

» Checking to see how well the training workloads
match the reference workloads

» Benchmarks compiled with low optimisation

» Instrumented to gather data on basic block counts
and whether particular branches are taken or not

» Multiple training (or reference) datasets added
together to give a single training (or reference)
workload.

What can't be used

» For SPEC CPU profile is used on multiple platforms
- Each platform may do different optimisations

» So performance cannot be used as a test for
representative data sets

- |f Platform A gets faster with profile feedback it does
not imply that Platform B also will.

» And similarly if Platform A derives no benefit.

» S0 metrics have to be derived from platform
agnostic metrics (if possible)

Static and dynamic branches

A static branch is a branch instruction that exists in
the code.

* A dynamic branch is one that occurs at runtime.

* Hence one static branch can contribute many
dynamic branches.

A representative workload is....

A representative training workload is one for which
each static branch is either:

> usually taken by both the training and reference
workloads,

or
- usually untaken by both of them.

Correspondence Value

» Correspondence Value for a benchmark

- Total number of correctly predicted dynamic
branches divided by the total number of dynamic
branches

» Ranges from zero (no branches correctly predicted)
* To 100% (meaning all branches correctly predicted)

Z (Frequency branch * (TakenTrain branch = TakenRef brcmch):
CV _ branches

Z F r equency branch

branches

10

Correspondence Values for CPU2000

Correspondence
between train
and reference

CPU2000_INT

Benchmark

164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197.parser
252.e0n
253.perlbmk
254.gap
255.vortex
256.bzip2
300.twolf

Correspondence
between train
and reference

100%
100%
98%
100%
96%
99%
100%
95%
95%
100%
96%
100%

CPU2000_FP
Benchmark

168.wupwise
171.swim
172.mgrid
173.applu
177.mesa
178.galgel
179.art
183.equake
187.facerec
188.ammp
189.lucas
191.fma3d
200.sixtrack
301.apsi

100%
100%
98%
100%
96%
83%
100%
100%
100%
100%
89%
100%
100%
2%

11

Visualising Correspondence Values

» Results are easier to understand as graphs
* Xx-axis is probability taken in reference workload
* y-axis is probability taken in training workload

> Size of mark is proportional to frequency
encountered (ie taken or untaken) in reference
workload.

12

Visualised Correspondence Value

Probability taken (training workload)

1.2

0.8

0.6

0.4

0.2

-0.2

Probability taken for all branch instructions

-0.2

0.2

0.4 0.6
Probability taken (reference workload)

1.2

13

300.twolf (CV=100%)

Probability taken for all branch instructions

Probability taken (training workload)

1.2

0.8

0.6

0.4

0.2

-0.2

e

IR

Y A

nchmark is
well-trained

-

-0.2

0.4 0.6
Probability taken (reference workload)

0.8

1.2

14

178. galgel (CV=83%)

Probability taken for all branch instructions

Probability taken {training workload)

1.4

1.2 I

1k

08

0.6

04

0.2

0

-0.2

[

couple of
/— br_ancl'geg.
== =l =U

are miss-trained

-0.2

1
0.2

| | |
0.4 0.6 0.8
Probability taken (reference workload)

I
1.2 1.4

15

186.crafty (CV=96%)

nchmark is
npredictable

Probability taken for all branch instructions

Probability taken (training workload)

1

0.8

0.6

0.4

0.2

e

o—

0.4 0.6
Probability taken {reference workload)

0.8

1.2

16

301.apsi (CV=72%)

Probability taken for all branch instructions

Probability taken (training workload)

1.2

0.8

0.6

0.4

0.2

-0.2

-0.4

————
| =
[@H_hm; = ~Fhm1
[m | e |
- E -
— Eﬂﬁ E \ = ‘
eral important
- branches are
miss-trained
-0.2 0 0.2 0.4 0.6 0.8 1 1?2 1?4

Probability taken (reference workload)

17

Coverage data

* However, one branch instruction might have
multiple targets.

- Data per branch is not easily accessible.

» Basic block counts are more easily accessible, and
unique.

18

Coverage data

However,

> Some basic block counts scale with runtime (eg inner
loop)

> Some basic block counts are constant for all runtimes
(eg initialisation code)

19

A representative workload is...

* A representative training workload will exercise
all the critical basic blocks of the reference
workload.

20

Coverage definition

* The coverage is the

 Sum of the dynamic basic block counts for the
reference workload that are also executed by the
training workload

» Divided by the sum of all the dynamic basic block
counts for the reference workload.

Z FrequencyRef,, . x(FrequencyTrain,, ,>0)

blocks
Z FrequenCyRefblock

blocks

coverage=

21

Coverage CPU2000

CPU2000 _INT
Benchmark
164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197.parser
252.eon
253.perlbmk
254.gap
255.vortex
256.bzip2
300.twolf

CPU2000_FP
Benchmark
100% 168.wupwise
100% 171.swim
100% 172.mgrid
100% 173.applu
100% 177.mesa
100% 178.galgel
100% 179.art
100% 183.equake
99% 187.facerec
100% 188.ammp
100% 189.lucas
100% 191.fma3d
200.sixtrack
301.apsi

Coverage

Coverage

100%
100%
100%
100%

98%

85%
100%
100%
100%
100%

81%
100%
100%

37%

22

Visualising coverage

- Sort the blocks in order of increasing execution
count

* X-axis is sorted basic block count for reference
» y-axis Is sorted basic block count for train

- Size of mark is proportional to the execution count
for the reference workload

23

300.twolf coverage (100%)

Plot of basic block execution count

Ordered block execution count (training workload)

1.4

1.2

0.8

0.6

0.4

0.2

-0.2

A are similarly hot

- @
H ks,
on Pl
=~ ¥
-, 4
v,
A
e - -

o (%olly—pop' shape
B ndicating that blocks

%
—

in training and
reference workloads

0.2 0.4 0.6 0.8 1 1.2 1.4
Ordered block execution count (reference workload) 24

301.apsi coverage (37%)

Plot of basic block execution count

1.2 T T T T T T T
o 1F -
E L |
§ 0.8 I o |
s
£ o8 o _
E 04 I -
S ozf e :
de that is hot in :
reference but not
coveredby tralnlng 0.2 0.4 0.6 0.8 1 12
Workload Ordered block execution count (reference workload)

1.4

25

Concluding remarks

» Coverage is easy to calculate, and provides a low-
bar for representative training workloads.

* If a block is not covered it cannot have been trained

» Correspondence Value calculations are a more
detailed approach.

» As can be seen from the apsi results, both
approaches are complementary.

» Using these calculations it is possible to evaluate
whether the current training workloads are sufficient
for code path optimisations.

26

