
Evaluating whether the training
data provided for profile feedback
is a realistic control flow for the

real workload.

Darryl Gove, Lawrence Spracklen, John Henning
Sun Microsystems Inc.

2

Outline

• The trouble with feedback
• Correspondence Values
• Coverage
• Concluding remarks

3

The trouble with feedback

• Profile feedback uses a training run of the code
• At minimum improves decisions about:
> Basic block layout
> Inlining of routines

• But....

4

The trouble with feedback

• Profile feedback uses a training run of the code
• At minimum improves decisions about:
> Basic block layout
> Inlining of routines

• But....
> It takes twice as long to build
> Requires 'representative' training data

5

The trouble with feedback

• Profile feedback uses a training run of the code
• At minimum improves decisions about:
> Basic block layout
> Inlining of routines

• But....
> It takes twice as long to build
> Requires 'representative' training data

Out of scope

But what does this really mean?

6

Method

• Using SPEC CPU2000 benchmark suite
• Checking to see how well the training workloads

match the reference workloads
• Benchmarks compiled with low optimisation
• Instrumented to gather data on basic block counts

and whether particular branches are taken or not
• Multiple training (or reference) datasets added

together to give a single training (or reference)
workload.

7

What can't be used

• For SPEC CPU profile is used on multiple platforms
• Each platform may do different optimisations
• So performance cannot be used as a test for

representative data sets
• If Platform A gets faster with profile feedback it does

not imply that Platform B also will.
• And similarly if Platform A derives no benefit.
• So metrics have to be derived from platform

agnostic metrics (if possible)

8

Static and dynamic branches

• A static branch is a branch instruction that exists in
the code.
• A dynamic branch is one that occurs at runtime.
• Hence one static branch can contribute many

dynamic branches.

9

A representative workload is....

A representative training workload is one for which
each static branch is either:
• usually taken by both the training and reference

workloads,
or
• usually untaken by both of them.

10

Correspondence Value

• Correspondence Value for a benchmark
• Total number of correctly predicted dynamic

branches divided by the total number of dynamic
branches
• Ranges from zero (no branches correctly predicted)
• To 100% (meaning all branches correctly predicted)

CV=
∑

branches

Frequency branch∗TakenTrain branch≡TakenRef branch

∑
branches

Frequency branch

11

Correspondence Values for CPU2000
CPU2000_INT
Benchmark

Correspondence
between train
and reference

CPU2000_FP
Benchmark

Correspondence
between train
and reference

164.gzip 100% 168.wupwise 100%
175.vpr 100% 171.swim 100%
176.gcc 98% 172.mgrid 98%
181.mcf 100% 173.applu 100%
186.crafty 96% 177.mesa 96%
197.parser 99% 178.galgel 83%
252.eon 100% 179.art 100%
253.perlbmk 95% 183.equake 100%
254.gap 95% 187.facerec 100%
255.vortex 100% 188.ammp 100%
256.bzip2 96% 189.lucas 89%
300.twolf 100% 191.fma3d 100%

200.sixtrack 100%
301.apsi 72%

12

Visualising Correspondence Values

• Results are easier to understand as graphs
• x-axis is probability taken in reference workload
• y-axis is probability taken in training workload
• Size of mark is proportional to frequency

encountered (ie taken or untaken) in reference
workload.

13

Visualised Correspondence Value

Branch usually
untaken in training

and reference
workloads

Branch usually
taken in training
and reference

workloads

Branch usually
untaken in training

but not in
reference workload

Branch usually
taken in training

but not in
reference workload

14

300.twolf (CV=100%)

Benchmark is
well-trained

15

178.galgel (CV=83%)

A couple of
branches

are miss-trained

16

186.crafty (CV=96%)
Benchmark is
unpredictable

17

301.apsi (CV=72%)

Several important
branches are
miss-trained

18

Coverage data

• However, one branch instruction might have
multiple targets.
• Data per branch is not easily accessible.
• Basic block counts are more easily accessible, and

unique.

19

Coverage data

• However, one branch instruction might have
multiple targets.
• Data per branch is not easily accessible.
• Basic block counts are more easily accessible, and

unique.
• However,
> Some basic block counts scale with runtime (eg inner

loop)
> Some basic block counts are constant for all runtimes

(eg initialisation code)

20

A representative workload is...

• A representative training workload will exercise
all the critical basic blocks of the reference
workload.

21

Coverage definition

• The coverage is the
• Sum of the dynamic basic block counts for the

reference workload that are also executed by the
training workload
• Divided by the sum of all the dynamic basic block

counts for the reference workload.

coverage=
∑
blocks

FrequencyRef block∗FrequencyTrainblock0

∑
blocks

FrequencyRef block

22

Coverage CPU2000
CPU2000_INT
Benchmark Coverage

CPU2000_FP
Benchmark Coverage

164.gzip 100%168.wupwise 100%
175.vpr 100%171.swim 100%
176.gcc 100%172.mgrid 100%
181.mcf 100%173.applu 100%
186.crafty 100%177.mesa 98%
197.parser 100%178.galgel 85%
252.eon 100%179.art 100%
253.perlbmk 100%183.equake 100%
254.gap 99%187.facerec 100%
255.vortex 100%188.ammp 100%
256.bzip2 100%189.lucas 81%
300.twolf 100%191.fma3d 100%

200.sixtrack 100%
301.apsi 37%

23

Visualising coverage

• Sort the blocks in order of increasing execution
count
• x-axis is sorted basic block count for reference
• y-axis is sorted basic block count for train
• Size of mark is proportional to the execution count

for the reference workload

24

300.twolf coverage (100%)

'Lolly-pop' shape
indicating that blocks

are similarly hot
in training and

reference workloads

25

301.apsi coverage (37%)

Code that is hot in
reference but not

covered by training
workload

26

Concluding remarks

• Coverage is easy to calculate, and provides a low-
bar for representative training workloads.
• If a block is not covered it cannot have been trained
• Correspondence Value calculations are a more

detailed approach.
• As can be seen from the apsi results, both

approaches are complementary.
• Using these calculations it is possible to evaluate

whether the current training workloads are sufficient
for code path optimisations.

John Henning
John.Henning@sun.com

Evaluating whether the training
data provided for profile

feedback is a realistic control
flow for the real workload.

