A Page Fault Equation for Dynamic Heap Sizing

Y.C. Tay
National University of Singapore

X.R. Zong
Duke University
Java, C#, Ruby ... require garbage collection (GC) for the heap

heap size H determines \#GC

issue: how to tune H?
For a garbage-collected (GC) application, how does execution time vary with heap size \(H \) ?

RAM allocation \(M \) changes dynamically. How should \(H \) vary with \(M \)?
How should H vary with M?

Our answer: Heap Sizing Rule

$H = \frac{M - b}{a}$

Where does $H = \frac{M - b}{a}$ come from?
Where does $H = \frac{M - b}{a}$ come from?

How does \#pagefaults n vary with M?

Page Fault Equation [TZ]:

$$n = \frac{1}{2} (K + \sqrt{K^2 - 4})(n^* + n_0) - n_0$$

where $K = 1 + \frac{M^* - M_0}{M - M_0}$

universal: works for Linux, Windows, compute/IO/memory-intensive workloads, garbage-collected applications

different heap sizes:

Page Fault Equation [TZ]:

$$n = \frac{1}{2} (K + \sqrt{K^2 - 4})(n^* + n_0) - n_0$$

where $K = 1 + \frac{M^* - M_0}{M - M_0}$

universal: works for Linux, Windows, compute/IO/memory-intensive workloads, garbage-collected applications

different mutators:

different garbage collectors:
Interpretation for n_0?

n_0 measures memory taken off freelist during GC

How does H affect n_0?

Page Fault Equation [TZ]:

$$n = \frac{1}{2} \left(K + \sqrt{K^2 - 4} \right) (n^* + n_0) - n_0$$

where $K = 1 + \frac{M^* - M_0}{M - M_0}$
How does H affect M^*?

Page Fault Equation [TZ]:

$$n = \frac{1}{2} \left(K + \sqrt{K^2 - 4} \right) (n^* + n_0) - n_0$$

where $K = 1 + \frac{M^* - M_0}{M - M_0}$
How should H vary with M?

Our answer: Heap Sizing Rule

$$H = \frac{M - b}{a}$$

Experiment: static M

JikesRVM dynamic heap sizing (varies H during execution according to heap utilization)

Graph showing elapsed time vs. memory allocation for static H according to Heap Sizing Rule.
How should H vary with M?

Our answer: Heap Sizing Rule

$$H = \frac{M - b}{a}$$

<table>
<thead>
<tr>
<th>experiment: dynamic M</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic H according to Heap Sizing Rule (H adjusted during GC only)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>page faults</th>
<th>MarkSweep pmd</th>
<th>SemiSpace pmd</th>
<th>MarkSweep xalan</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVM</td>
<td>425828</td>
<td>680575</td>
<td>352338</td>
</tr>
<tr>
<td>Rule</td>
<td>36228</td>
<td>36470</td>
<td>64580</td>
</tr>
<tr>
<td>execution</td>
<td>RVM</td>
<td>4762</td>
<td>8362</td>
</tr>
<tr>
<td>time (sec)</td>
<td>Rule</td>
<td>419</td>
<td>404</td>
</tr>
</tbody>
</table>
summary

• pagefault modeling is difficult for GC applications
 --- reference pattern changes with H

• our paper presents a heap-aware pagefault equation

• this equation can be used for dynamic heap sizing

future work

using the equation for heap partitioning