Agile Resource Management in a Virtualized Data Center

Wei Zhang1, Hangwei Qian2
Craig E. Wills1, Michael Rabinovich2

1CS Department, Worcester Polytechnic Institute
2EECS Department, Case Western Reserve University
Outline

- Background
- Approach
- Implementation
- Study & Results
- Future work & Summary
Virtualized Data Centers

Diagram showing a virtualized data center connected to the internet through DNS and switch 1. It consists of two data centers, one with a PM, VM, VM, VM, VM, and DB, and another with a PM, VM, VM, and DB. Users connect to the internet.
VM-based Resource Management

- **Previous work**
 - Power off/on a VM
 - Suspend/Resume a VM
 - Stop/Start application servers within a VM
 - Live VM migration

- **Our approach**
 - Ghost VMs
Motivation: Agility of previous work

- Power off/on a VM
 - Several minutes
- Suspend/Resume a VM
 - Several minutes (if including time of rejoining the application cluster)
- Stop/Start application servers within a VM
 - Several minutes
- Live VM migration
 - Tens of seconds (if including pre-copy phase)
What are Ghost VMs?

- “Invisible” VMs
 - to the content switch
- “Idle” VMs
 - to the PMs
- “Member” VMs
 - to the application cluster
- “Hot spare” VMs
 - to the application
Characteristics of Ghost VMs

- Negligible CPU and network usage
 - hide behind the switch (do not receive requests)
- Consume same amount memory as active VMs
- Agile (several seconds to become active)
 - No need to stop/start/suspend/resume
 - No need to rejoin application cluster
 - Only need to reconfigure the switch
- They are stepping stones to active VMs
Why ghost? why not just active?

- More active VMs ≠ better performance
 - Scheduling overhead, such as context switching
 - Minimal active VMs on each PM
- Extra capacity within a data center is not deployed to VMs until needed
 - Less overhead
 - Resources can be reassigned quickly
How does our algorithm work?

- **Make Decisions**
 - Capacity and Utilization
 - of PMs, VMs, and applications
 - Current and Projected

- **Enact Solutions**
 - Promote ghost VMs to active VMs
 - Demote active VMs to ghost VMs
 - Resume suspended VMs on disks
 - Suspend ghost VMs to disks
Implementation

Resource Pool

PM 1 2 ... n

Switch

Resource Manager

Resource Collector
- Get VM Usage
 - Reduce VM Capacity
 - Demote VMs

Resource Reallocator
- Get PM Usage
 - Increase VM Capacity
 - Promote VMs

Ghost Manager
- Monitor Ghost
- Prepare Ghost

Collect Resource
Prepare Ghost
Our Data Centers

- Two data centers
 - Located at WPI and CWRU
- Two types of virtualization
 - VMWare Server running on Debian Linux
 - VMWare ESX Server running on bare metal
- PMs and Switches
 - Intel 2-core with 2G RAM on 100M Net
 - Intel 4-core with 4G RAM on 100M Net
 - Nortel Alteon 2208
 - Cisco Content Switch 11501
- Applications and database
 - TPC-W bookstore on Websphere with Oracle
Results: Ghost Promotion

CPU Utilization (%)

Time (secs)

promotion called

new VM joined

load increased
Agility: Legacy vs Ghost

- **Approach**
 - Legacy vs Ghost

- **Load growth rate**
 - Fast vs Slow

- **Performance metrics**
 - Error (%)
 - Slow Responses (%)
 - Median Response Time (ms)
Agility: Legacy vs Ghost

• Results
 ◦ Ghost outperforms Legacy when load growth rate is fast

<table>
<thead>
<tr>
<th>Approach / Growth Rate</th>
<th>% Slow Responses (> 500ms)</th>
<th>Median Response Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghost / Fast</td>
<td>2.6</td>
<td>46</td>
</tr>
<tr>
<td>Legacy / Fast</td>
<td>5.7</td>
<td>69</td>
</tr>
<tr>
<td>Ghost / Slow</td>
<td>3.4</td>
<td>38</td>
</tr>
<tr>
<td>Legacy / Slow</td>
<td>3.4</td>
<td>37</td>
</tr>
</tbody>
</table>

Legacy vs Ghost in our VMWare ESX data center
Performance: Fixed vs Manual vs Ghost

- Approach
 - Fixed
 - Manual

- Multiple applications workload

![Graph showing client load (EBs) over time for different applications.](image)
Performance:

Fixed vs Manual vs Ghost

- **Mean number of active VMs**
 - Achieve similar performance with less number of active VMs on average

- **Parameters**
 - High watermark (HW)
 - Low watermark (LW)
Future Work

- Global resource management
 - Balance load between data centers
 - Geographically distributed data centers
- Scalability for mega data centers
 - Scalability of our approach
- Other types of resource
 - Memory, network, disk, etc.
Summary

- Web applications introduce resource provisioning challenge
 - Virtualization is promising in utility computing
 - Agility is important to data centers
 - Previous approaches have advantages and disadvantages

- We developed, implemented and tested a virtualized data center solution
 - Use Ghost VMs
 - Achieve better agility
Thank you!

Questions?