CPU2017 Flag Description
Lenovo Global Technology ThinkSystem ST550 (2.00 GHz, Intel Xeon Silver 4109T)

Copyright © 2016 Intel Corporation. All Rights Reserved.


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Base Portability Flags

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r


Peak Portability Flags

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r

521.wrf_r

526.blender_r

527.cam4_r

538.imagick_r

544.nab_r

549.fotonik3d_r

554.roms_r


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Peak Optimization Flags

C benchmarks

519.lbm_r

538.imagick_r

544.nab_r

C++ benchmarks

Fortran benchmarks

503.bwaves_r

549.fotonik3d_r

554.roms_r

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Base Other Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Peak Other Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C

Benchmarks using both C and C++

Benchmarks using Fortran, C, and C++


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

submit= MYMASK=`printf '0x%x' $((1<<$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command, using taskset, is used for Linux64 systems without numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:
submit= numactl --localalloc --physcpubind=$SPECCOPYNUM $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux64 systems with support for numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:

Shell, Environment, and Other Software Settings

numactl --interleave=all "runspec command"
Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
Syntax: KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]
The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors.
It applies to binaries built with -qopenmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
modifier:
    granularity=fine Causes each OpenMP thread to be bound to a single thread context.
type:
    compact Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the thread context where the <n> OpenMP thread was placed.
    scatter Specifying scatter distributes the threads as evenly as possible across the entire system.
permute: The permute specifier is an integer value controls which levels are most significant when sorting the machine topology map. A value for permute forces the mappings to make the specified number of most significant levels of the sort the least significant, and it inverts the order of significance.
offset: The offset specifier indicates the starting position for thread assignment.

Please see the Thread Affinity Interface article in the Intel Composer XE Documentation for more details.

Example: KMP_AFFINITY=granularity=fine,scatter
Specifying granularity=fine selects the finest granularity level and causes each OpenMP or auto-par thread to be bound to a single thread context.
This ensures that there is only one thread per core on cores supporting HyperThreading Technology
Specifying scatter distributes the threads as evenly as possible across the entire system.
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.

Example: KMP_AFFINITY=compact,1,0
Specifying compact will assign the n+1 thread to a free thread context as close as possible to thread n.
A default granularity=core is implied if no granularity is explicitly specified.
Specifying 1,0 sets permute and offset values of the thread assignment.
With a permute value of 1, thread n+1 is assigned to a consecutive core. With an offset of 0, the process's first thread 0 will be assigned to thread 0.
The same behavior is exhibited in a multisocket system.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -qopenmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Set stack size to unlimited
The command "ulimit -s unlimited" is used to set the stack size limit to unlimited.
Free the file system page cache
The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.

Red Hat Specific features

Transparent Huge Pages
On RedHat EL 6 and later, Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead.
Hugepages are used by default unless the /sys/kernel/mm/redhat_transparent_hugepage/enabled field is changed from its RedHat EL6 default of 'always'.

Operating System Tuning Parameters

sched_cfs_bandwidth_slice_us
This OS setting controls the amount of run-time(bandwidth) transferred to a run queue from the task's control group bandwidth pool. Small values allow the global bandwidth to be shared in a fine-grained manner among tasks, larger values reduce transfer overhead. The default value is 5000 (ns).
sched_latency_ns
This OS setting configures targeted preemption latency for CPU bound tasks. The default value is 24000000 (ns).
sched_migration_cost_ns
Amount of time after the last execution that a task is considered to be "cache hot" in migration decisions. A "hot" task is less likely to be migrated to another CPU, so increasing this variable reduces task migrations. The default value is 500000 (ns).
sched_min_granularity_ns
This OS setting controls the minimal preemption granularity for CPU bound tasks. As the number of runnable tasks increases, CFS(Complete Fair Scheduler), the scheduler of the Linux kernel, decreases the timeslices of tasks. If the number of runnable tasks exceeds sched_latency_ns/sched_min_granularity_ns, the timeslice becomes number_of_running_tasks * sched_min_granularity_ns. The default value is 8000000 (ns).
sched_wakeup_granularity_ns
This OS setting controls the wake-up preemption granularity. Increasing this variable reduces wake-up preemption, reducing disturbance of compute bound tasks. Lowering it improves wake-up latency and throughput for latency critical tasks, particularly when a short duty cycle load component must compete with CPU bound components. The default value is 10000000 (ns).
numa_balancing
This OS setting controls automatic NUMA balancing on memory mapping and process placement. Setting 0 disables this feature. It is enabled by default (1).

Firmware / BIOS / Microcode Settings

Operating Modes Selections: (Default="Efficiency -Favor Performance")
The average customer doesn't know the best way to set each individual power/performance feature for their specific environment. Because of this, a menu option is provided that can help a customer optimize the system for things such as minimum power usage/acoustic levels, maximum efficiency, Energy Star optimization, or maximum performance.
C-States:
C-states reduce CPU idle power. There are three options in this mode: Legacy, Autonomous, Disable.
C1 Enhanced Mode:
Enabling C1E (C1 enhanced) state can save power by halting CPU cores that are idle.
Turbo Mode:
Enabling turbo mode can boost the overall CPU performance when all CPU cores are not being fully utilized. A CPU core can run above its rated frequency for a short perios of time when it is in turbo mode.
Hyper-Threading:
Enabling Hyper-Threading let operating system addresses two virtual or logical cores for a physical presented core. Workloads can be shared between virtual or logical cores when possible. The main function of hyper-threading is to increase the number of independent instructions in the pipeline for using the processor resources more efficiently.
Execute Disable Bit:
The execute disable bit allows memory to be marked as executable or non-executable when used with a supporting operating system. This can improve system security by configuring the processor to raise an error to the operating system when code attempts to run in non-executable memory.
DCA:
DCA capable I/O devices such as network controllers can place data directly into the CPU cache, which improves response time.
Power/Performance Bias:
Power/Performance bias determines how aggressively the CPU will be power managed and placed into turbo. With "Platform Controlled", the system controls the setting. Selecting "OS Controlled" allows the operating system to control it.
Per Core P-state:
When per-core P-states are enabled, each physical CPU core can operate at separate frequencies. If disabled, all cores in a package will operate at the highest resolved frequency of all active threads.
CPU Frequency Limits:
The maximum turbo frequency can be restricted with turbo limiting to a frequency that is between the maximum turbo frequency and the rated frequency for the CPU installed.
Energy Efficient Turbo:
When energy efficient turbo is enabled, the CPU's optimal turbo frequency will be tuned dynamically based on CPU utilization.
Uncore Frequency Scaling:
When enabled, the CPU uncore will dynamically change speed based on the workload.
MONITOR/MWAIT:
MONITOR/MWAIT instructions are used to engage C-states.
Sub-NUMA Cluster (SNC):
SNC breaks up the last level cache (LLC) into disjoint clusters based on address range, with each cluster bound to a subset of the memory controllers in the system. SNC improves average latency to the LLC and memory. SNC is a replacement for the cluster on die (COD) feature found in previous processor families. For a multi-socketed system, all SNC clusters are mapped to unique NUMA domains. (See also IMC interleaving.) Values for this BIOS option can be:
Snoop Preference:
Select the appropriate snoop mode based on the workload. There are two snoop modes: "HS w. Directory + OSB +HitME cache" and "Home Snoop". Default is "HS w. Directory + OSB +HitME cache".
XPT Prefetcher
XPT prefetch is a mechanism that enables a read request that is being sent to the last level cache to speculatively issue a copy of that read to the memory controller prefetching
UPI Prefetcher
UPI prefetch is a mechanism to get the memroy read started early on DDR bus. The UPI receive path will spawn a memory read to the memory controller prefetcher.
Patrol Scrub:
Patrol Scrub is a memory RAS feature which runs a background memory scrub against all DIMMs. Can negatively impact performance.
DCU Streamer Prefetcher:
DCU (Level 1 Data Cache) streamer prefetcher is an L1 data cache prefetcher. Lightly threaded applications and some benchmarks can benefit from having the DCU streamer prefetcher enabled. Default setting is Enable.
Stale A to S
The in-memory directory has three states: invalid (I), snoopAll (A), and shared (S). Invalid (I) state means the data is clean and does not exist in any other socket`s cache. The snoopAll (A) state means the data may exist in another socket in exclusive or modified state. Shared (S) state means the data is clean and may be shared across one or more socket`s caches. When doing a read to memory, if the directory line is in the A state we must snoop all the other sockets because another socket may have the line in modified state. If this is the case, the snoop will return the modified data. However, it may be the case that a line is read in A state and all the snoops come back a miss. This can happen if another socket read the line earlier and then silently dropped it from its cache without modifying it. Values for this BIOS option can be: Stale A to S may be beneficial in a workload where there are many cross-socket reads.
LLC Dead Line Allocation
In some Intel CPU caching schemes, mid-level cache (MLC) evictions are filled into the last level cache (LLC). If a line is evicted from the MLC to the LLC, the core can flag the evicted MLC lines as "dead." This means that the lines are not likely to be read again. This option allows dead lines to be dropped and never fill the LLC if the option is disabled. Values for this BIOS option can be:
Adjacent Cache Prefetch:
Lightly threaded applications and some benchmarks can benefit from having the adjacent cache line prefetch enabled. Default is enable.
Intel Virtualization Technology:
Intel Virtualization Technology allows a platform to run multiple operating systems and applications in independent partitions, so that one computer system can function as multiple virtual system. Default is enable.
Hardware Prefethcer:
Lightly threaded applications and some benchmarks can benefit from having the hardware prefetcher enabled. Default is enable.
Trusted Execution Technology:
Enable Intel Trusted Execution Technology (Intel TXT). Default is disable.
Acounstic Mode
By using acoustic mode, the user has some control over the fan speeds and airflow (and noise) that is produced by the system fans. This mode can be used for noise or airflow concerns in the user environment. As a result, Mode1,2,3,4,5 increase the possibility that the node might have to be throttled to maintain cooling within the fan speed limitation. If there is power or thermal demanding PCI card installed in the chassis, acoustic mode is automatically disabled.

Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html,
http://www.spec.org/cpu2017/flags/Lenovo-Platform-Flags-V1.2-SKL-F.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml,
http://www.spec.org/cpu2017/flags/Lenovo-Platform-Flags-V1.2-SKL-F.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2018 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.0.2.
Report generated on 2018-10-31 16:05:37 by SPEC CPU2017 flags formatter v5178.