This result has been formatted using multiple flags files. The "default header section" from each of them appears next.
Note: The GNU Compiler Collection provides a wide array of compiler options, described in detail and readily available at https://gcc.gnu.org/onlinedocs/gcc/Option-Index.html#Option-Index and https://gcc.gnu.org/onlinedocs/gfortran/. This SPEC CPU flags file contains excerpts from and brief summaries of portions of that documentation.
SPEC's modifications are:
Copyright (C) 2006-2017 Standard Performance Evaluation Corporation
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being "Funding Free Software", the Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in your SPEC CPU kit at $SPEC/Docs/licenses/FDL.v1.3 and on the web at http://www.spec.org/cpu2017/Docs/licenses/FDL.v1.3. A copy of "Funding Free Software" is on your SPEC CPU kit at $SPEC/Docs/licenses/FundingFreeSW and on the web at http://www.spec.org/cpu2017/Docs/licenses/FundingFreeSW.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
clang is a C, C++, and Objective-C compiler which encompasses preprocessing, parsing, optimization, code generation, assembly, and linking. Depending on which high-level mode setting is passed, Clang will stop before doing a full link.
The clang executable is actually a small driver which controls the overall execution of other tools such as the compiler, assembler and linker. Typically you do not need to interact with the driver, but you transparently use it to run the other tools.
PreprocessingThis stage handles tokenization of the input source file, macro expansion, #include expansion and handling of other preprocessor directives. The output of this stage is typically called a .i (for C), .ii (for C++), .mi (for Objective-C), or .mii (for Objective-C++) file.
This stage parses the input file, translating preprocessor tokens into a parse tree. Once in the form of a parse tree, it applies semantic analysis to compute types for expressions as well and determine whether the code is well formed. This stage is responsible for generating most of the compiler warnings as well as parse errors. The output of this stage is an Abstract Syntax Tree (AST).
Code Generation and OptimizationThis stage translates an AST into low-level intermediate code (known as LLVM IR) and ultimately to machine code. This phase is responsible for optimizing the generated code and handling target-specific code generation. The output of this stage is typically called a .s file or assembly file.
Clang also supports the use of an integrated assembler, in which the code generator produces object files directly. This avoids the overhead of generating the .s file and of calling the target assembler.
AssemblerThis stage runs the target assembler to translate the output of the compiler into a target object file. The output of this stage is typically called a .o file or object file.
LinkerThis stage runs the target linker to merge multiple object files into an executable or dynamic library. The output of this stage is typically called an a.out, .dylib or .so file.
Invoke the LLVM Fortran compiler
DragonEgg is a gcc plugin that replaces GCC's optimizers and code generators with those from the LLVM project
To build and run Fortran programs:
*** $ gfortran [optimization flags] -fplugin=path/dragonegg.so [plugin optimization flags] -c xyz.f90
*** $ clang -O3 -flto -lgfortran -o xyz xyz.o
*** $ ./xyz
optimization flags:
flags that GFortran frontend will use to generate the IR for DragonEgg plugin. It is recommend to use basic out-of-the-box flags (eg: -m64 -O2, preferably least GFortran optimization(-O0)
plugin optimization flags:
Optimization flags DragonEgg plugin will use to generate the optimized LLVM IR and code generation. Here you can use higher optimization flags like -O3, -mavx etc if required.
Note:
* LLVM releases on llvm.org provides only sources releases.
* Latest release of DragonEgg sources is at http://llvm.org/releases/download.html#3.5.2
* DragonEgg is a self contained plugin with llvm embedded within, so its recommended to use LLVM 3.5.2 sources when building DragonEgg.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
CPU2017 suite WRF, POP2 benchmarks:
x86 architecture is little-endian. Since these benchmarks are written keeping big-endian architecture in mind, this portability flag is required for the compiler to generate correct code.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Let the type "char" be unsigned, like "unsigned char".
Note: this particular portability flag is included for 526.blender_r per the recommendation in its documentation - see http://www.spec.org/cpu2017/Docs/benchmarks/526.blender_r.html.
Some systems need to see alternate definitions for boolean types. This flag enables their use.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This macro indicates that Fortran functions called from C should have their names lower-cased.
CPU2017 suite WRF, POP2 benchmarks:
x86 architecture is little-endian. Since these benchmarks are written keeping big-endian architecture in mind, this portability flag is required for the compiler to generate correct code.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Let the type "char" be unsigned, like "unsigned char".
Note: this particular portability flag is included for 526.blender_r per the recommendation in its documentation - see http://www.spec.org/cpu2017/Docs/benchmarks/526.blender_r.html.
Some systems need to see alternate definitions for boolean types. This flag enables their use.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Fortran to C symbol naming. C symbol names are lower case with one underscore. _symbol
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
This option is used to indicate that the host system's integers are 32-bits wide, and longs and pointers are 64-bits wide. Not all benchmarks recognize this macro, but the preferred practice for data model selection applies the flags to all benchmarks; this flag description is a placeholder for those benchmarks that do not recognize this macro.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Instructs the linker to use the first definition encounterd.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Instructs the linker to use the first definition encounterd.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Generate code for processors that include the AVX extensions.
Enables the adcx instruction generation support.
Instructs the compiler to unroll the loops wherever possible.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Instructs the linker to use the first definition encounterd.
Load the plugin code in file dragonegg.so, assumed to be a shared object to be dlopen'd by the compiler.
Passes the argument list following the flag to the DragonEgg gfortran plugin. Each argument must be enclosed in quotes.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops. Use the option -fplugin-arg-dragonegg-llvm-option="-disable-vect-cmp" to pass this option to LLVM backend through dragonegg.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with gfortran libraries
Instructs the compiler to link with AMD-supported math library
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Generate code for processors that include the AVX extensions.
Enables the adcx instruction generation support.
Instructs the compiler to unroll the loops wherever possible.
Instructs the linker to use the first definition encounterd.
Load the plugin code in file dragonegg.so, assumed to be a shared object to be dlopen'd by the compiler.
Passes the argument list following the flag to the DragonEgg gfortran plugin. Each argument must be enclosed in quotes.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops. Use the option -fplugin-arg-dragonegg-llvm-option="-disable-vect-cmp" to pass this option to LLVM backend through dragonegg.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with gfortran libraries
Instructs the compiler to link with AMD-supported math library
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
Instructs the linker to use the first definition encounterd.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
Generate code for processors that include the AVX extensions.
Enables the adcx instruction generation support.
Instructs the compiler to unroll the loops wherever possible.
Instructs the linker to use the first definition encounterd.
Load the plugin code in file dragonegg.so, assumed to be a shared object to be dlopen'd by the compiler.
Passes the argument list following the flag to the DragonEgg gfortran plugin. Each argument must be enclosed in quotes.
Certain loops with breaks maybe vectorized by default at O2 and above. In some extreme situations this may result in unsafe behavior. Use this option to disable vectorization of such loops. Use the option -fplugin-arg-dragonegg-llvm-option="-disable-vect-cmp" to pass this option to LLVM backend through dragonegg.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. AOCC user guide may be referred for detailed documentation of optimizations enabled under Ofast
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
This option avoids runtime memory dependency checks to enable aggressive vectorization.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. AOCC user guide may be referred for detailed documentation of optimizations enabled under Ofast
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
Passes the option-name through the compiler frontend to the optimizer.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables AVX2 (Advanced Vector Extensions, 2nd generation) support.
Enables the adcx instruction generation support.
Instructs the compiler to unroll the loops wherever possible.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Load the plugin code in file dragonegg.so, assumed to be a shared object to be dlopen'd by the compiler.
Passes the argument list following the flag to the DragonEgg gfortran plugin. Each argument must be enclosed in quotes.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined. Use the option -fplugin-arg-dragonegg-llvm-option="-inline-threshold:1000" to pass this option to LLVM backend through dragonegg
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with gfortran libraries
Instructs the compiler to link with AMD-supported math library
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. AOCC user guide may be referred for detailed documentation of optimizations enabled under Ofast
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
This option avoids runtime memory dependency checks to enable aggressive vectorization.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Like -O2, except that it enables optimizations that take longer to perform or that may generate larger code (in an attempt to make the program run faster).
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
Enables AVX2 (Advanced Vector Extensions, 2nd generation) support.
Enables the adcx instruction generation support.
Instructs the compiler to unroll the loops wherever possible.
Enables a range of optimizations that provide faster, though sometimes less precise, mathematical operations that may not conform to the IEEE-754 specifications. When this option is specified, __STDC_IEC_559__ macro is ignored even if set by the system headers
Load the plugin code in file dragonegg.so, assumed to be a shared object to be dlopen'd by the compiler.
Passes the argument list following the flag to the DragonEgg gfortran plugin. Each argument must be enclosed in quotes.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined. Use the option -fplugin-arg-dragonegg-llvm-option="-inline-threshold:1000" to pass this option to LLVM backend through dragonegg
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
Instructs the compiler to link with gfortran libraries
Instructs the compiler to link with AMD-supported math library
Generate output files in LLVM formats, suitable for link time optimization. When used with -S this generates LLVM intermediate language assembly files, otherwise this generates LLVM bitcode format object files (which may be passed to the linker depending on the stage selection options).
Note:
-flto requires llvm to be build with gold-linker. The default binary releases of llvm from llvm.org do not have LLVMGold.so and so will not support -flto. To use -flto, you will have to
Download, configure and build binutils for gold with plugin support.
*** $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
*** $ mkdir build
*** $ cd build
*** $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
*** $ make all-gold
That should leave you with build/gold/ld-new which supports the -plugin option. Running make will additionally build build/binutils/ar and nm-new binaries supporting plugins.
Build the LLVMgold plugin. Run CMake with -DLLVM_BINUTILS_INCDIR=/path/to/binutils/include. The correct include path will contain the file plugin-api.h.
Replace the existing binutils tools in /usr/bin with the newly built gold enabled binutils tools like ld, nm, ar. It is recommended that you use soft links to back up and replace existing ld, nm, ar with the gold enabled version.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
The optimization merges duplicate constant uses into a register to reduce instruction width.
-Wl tells the linker to accept the following argument. In the example, it tells the linker to allow multiple definitions.
Enables all the optimizations from -O3 along with other aggressive optimizations that may violate strict compliance with language standards. AOCC user guide may be referred for detailed documentation of optimizations enabled under Ofast
Specify that Clang should generate code for a specific processor family member and later. For example, if you specify -march=znver1, the compiler is allowed to generate instructions that are valid on AMD Zen processors, but which may not exist on earlier products.
This option transforms the layout of arrays of structure types and its fields to improve the cache locality. Possible values that can be specified are 1,2 and 3 Aggressive analysis and transformations are performed at higher level of transformations, with -fstruct-layout=3 being the most aggressive. Use -fstruct-layout=3 when you know the allocated size of array of structures fits within 64KB. Use the value of 2 when a similar size exceeds 64KB but does not exceed 4GB. The option is effective only under flto as the whole program analysis is required to perform this optimization.
Passes the option-name through the compiler frontend to the optimizer.
This option avoids runtime memory dependency checks to enable aggressive vectorization.
Restricts the optimization and code generation to first-generation AVX instructions.
Sets the limit at which loops will be unrolled. For example,if unroll-threshold is set to 100 then only loops with 100 or less instructions will be unrolled.
The optimization transforms the data layout of a single dimensional array to provide better cache locality by analysing the access patterns.
Sets the compiler's inlining threshold level to the value passed as argument. The inline threshold is used in the inliner heuristics to decide which function should be inlined
Sets the compiler's inlining heuristics to an aggressive level by increasing the inline thresholds.
Use the jemalloc library, which is a general purpose malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Somewhere between -O0 and -O2.
If multiple "O" options are used, with or without level numbers, the last such option is the one that is effective. Level 2 is assumed if no value is specified (i.e. "-O". The default is "-O2".
This result has been formatted using multiple flags files. The "submit command" from each of them appears next.
Using numactl to bind processes and memory to cores
For multi-copy runs or single copy runs on systems with multiple sockets, it is advantageous to bind a process to a particular core. Otherwise, the OS may arbitrarily move your process from one core to another. This can effect performance. To help, SPEC allows the use of a "submit" command where users can specify a utility to use to bind processes. We have found the utility 'numactl' to be the best choice.
numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. The numactl flag "--physcpubind" specifies which core(s) to bind the process. "-l" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. For full details on using numactl, please refer to your Linux documentation, 'man numactl'
Note that some versions of numactl, particularly the version found on SLES 10, we have found that the utility incorrectly interprets application arguments as it's own. For example, with the command "numactl --physcpubind=0 -l a.out -m a", numactl will interpret a.out's "-m" option as it's own "-m" option. To work around this problem, a user can put the command to be run in a shell script and then run the shell script using numactl. For example: "echo 'a.out -m a' > run.sh ; numactl --physcpubind=0 bash run.sh"
SPECrate runs might use one of these methods to bind processes to specific processors, depending on the config file.
Linux systems: the numactl command is commonly used. Here is a brief guide to understanding the specific command which will be found in the config file:
Solaris systems: The pbind command is commonly used, via
submit=echo 'pbind -b...' > dobmk; sh dobmk
The specific command may be found in the config file; here is a brief guide to understanding that command:
pbind -b causes this copy's processes to be bound to the CPU specified by the expression that follows it. See the config file used in the run for the exact syntax, which tends to be cumbersome because of the need to carefully quote parts of the expression. When all expressions are evaluated, the jobs are typically distributed evenly across the system, with each chip running the same number of jobs as all other chips, and each core running the same number of jobs as all other cores.
The pbind expression may include various elements from the SPEC toolset and from standard Unix commands, such as:
No special commands are needed for feedback-directed optimization, other than the compiler profile flags.
This result has been formatted using multiple flags files. The "sw environment" from each of them appears next.
Transparent Huge Pages (THP)
THP is an abstraction layer that automates most aspects of creating, managing, and using huge pages. THP is designed to hide much of the complexity in using huge pages from system administrators and developers, as normal huge pages must be assigned at boot time, can be difficult to manage manually, and often require significant changes to code in order to be used effectively. Most recent Linux OS releases have THP enabled by default
Linux Huge Page settings
If you need finer control and manually set the Huge Pages you can follow the below steps:
Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt
ulimit -s <n>
Sets the stack size to n kbytes, or unlimited to allow the stack size to grow without limit.
ulimit -l <n>
Sets the maximum size of memory that may be locked into physical memory.
OMP_NUM_THREADS
Sets the maximum number of OpenMP parallel threads applications based on OpenMP may use.
powersave -f (on SuSE)
Makes the powersave daemon set the CPUs to the highest supported frequency.
/etc/init.d/cpuspeed stop (on Red Hat)
Disables the cpu frequency scaling program in order to set the CPUs to the highest supported frequency.
LD_LIBRARY_PATH
An environment variable set to include the LLVM, JEMalloc and SmartHeap libraries used during compilation of the binaries. This environment variable setting is not needed when building the binaries on the system under test.
kernel/randomize_va_space
This option can be used to select the type of process address space randomization that is used in the system, for architectures that support this feature.
*** 0 - Turn the process address space randomization off. This is the default for architectures that do not support this feature anyways, and kernels that are booted with the "norandmaps" parameter.
*** 1 - Make the addresses of mmap base, stack and VDSO page randomized. This, among other things, implies that shared libraries will be loaded to random addresses. Also for PIE-linked binaries, the location of code start is randomized. This is the default if the CONFIG_COMPAT_BRK option is enabled.
*** 2 - Additionally enable heap randomization. This is the default if CONFIG_COMPAT_BRK is disabled.
MALLOC_CONF
An environment variable set to tune the jemalloc allocation strategy during the execution of the binaries. This environment variable setting is not needed when building the binaries on the system under test.
One or more of the following may have been used in the run. If so, it will be listed in the notes sections. Here is a brief guide to understanding them:
LD_LIBRARY_PATH=<directories> (set via config file preENV)
LD_LIBRARY_PATH controls the search order for libraries. Often, it can be defaulted. Sometimes, it is
explicitly set (as documented in the notes in the submission), in order to ensure that the correct versions of
libraries are picked up.
OMP_STACKSIZE=N (set via config file preENV)
Set the stack size for subordinate threads.
ulimit -s N
ulimit -s unlimited
'ulimit' is a Unix commands, entered prior to the run. It sets the stack size for the main process, either
to N kbytes or to no limit.
OS Tuning
ulimit:
Used to set user limits of system-wide resources. Provides control over resources available to the shell and processes started by it. Some common ulimit commands may include:
Zone Reclaim:
Zone reclaim allows the reclaiming of pages from a zone if the number of free pages falls below a watermark even if other zones still have enough pages available. Reclaiming a page can be more beneficial than taking the performance penalties that are associated with allocating a page on a remote zone, especially for NUMA machines.
Performance Governors (Linux):
In-kernel CPU frequency governors are pre-configured power schemes for the CPU. The CPUfreq governors use P-states to change frequencies and lower power consumption. The dynamic governors can switch between CPU frequencies, based on CPU utilization to allow for power savings while not sacrificing performance.
To set the governor, use the following commmand: "cpupower frequency-set -r -g {desired_governor}"
Disabling Linux services:
Certain Linux services may be disabled to minimize tasks that may consume CPU cycles.
irqbalance:
Disabled through "service irqbalance stop". Depending on the workload involved, the irqbalance service reassigns various IRQ's to system CPUs. Though this service might help in some situations, disabling it can also help environments which need to minimize or eliminate latency to more quickly respond to events.
numa_balancing:
Disabled through "echo 0 > /proc/sys/kernel/numa_balancing". This feature will automatically migrate data on demand so memory nodes are aligned to the local CPU that is accessing data. Depending on the workload involved, enabling this can boost the performance if the workload performs well on NUMA hardware. If the workload is statically set to balance between nodes, then this service may not provide a benefit.
Tuning Kernel parameters:
The following Linux Kernel parameters were tuned to better optimize performance of some areas of the system:
swappiness:
The swappiness value can range from 1 to 100. A value of 100 will cause the kernel to swap out inactive processes frequently in favor of file system performance, resulting in large disk cache sizes. A value of 1 tells the kernel to only swap processes to disk if absolutely necessary.
tuned-adm:
The tuned-adm tool is a commandline interface for switching between different tuning profiles available to the tuned tuning daeomn available in supported Linux distros. The default configuration file is located in /etc/tuned.conf and the supported profiles can be found in /etc/tune-profiles.
Some profiles that may be available by default include: default, desktop-powersave, server-powersave, laptop-ac-powersave, laptop-battery-powersave, spindown-disk, throughput-performance, latency-performance, enterprise-storage
To set a profile, one can issue the command "tuned-adm profile (profile_name)". Here are details about relevant profiles.
Transparent Huge Pages (THP):
THP is an abstraction layer that automates most aspects of creating, managing, and using huge pages. THP is designed to hide much of the complexity in using huge pages from system administrators and developers, as normal huge pages must be assigned at boot time, can be difficult to manage manually, and often require significant changes to code in order to be used effectively. Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead. Most recent Linux OS releases have THP enabled by default.
Linux Huge Page settings:
If you need finer control and manually set the Huge Pages you can follow the below steps:
Note that further information about huge pages may be found in your Linux documentation file: /usr/src/linux/Documentation/vm/hugetlbpage.txt
Firmware Settings
One or more of the following settings may have been set. If so, the "Platform Notes" section of the report will say so; and you can read below to find out more about what these settings mean.
AMD SMT Option (Default = Enabled):
This feature allows enabling or disabling of logical processor cores on processors supporting AMD SMT. When enabled, each physical processor core operates as two logical processor cores. When disabled, each physical core operates as only one logical processor core. Enabling this option can improve overall performance for applications that benefit from a higher processor core count.
Thermal Configuration (Default = Optimal Cooling):
This feature allows the user to select the fan cooling solution for the system. Values for this BIOS option can be:
Performance Determinism (Default = Performance Deterministic):
This option allows the processor to use a given performance level as the max cap, or to let the processor operate as close to the thermal design point (TDP) as possible. Values for this BIOS option can be:
Processor Power and Utilization Monitoring (Default = Enabled):
This BIOS option allows the enabling/disabling of iLo Processor State Mode Switching and Insight Power Management Processor Utilization Monitoring.
When set to disabled, the system will also set the Power Regulator mode to Static High Performance mode and the HP Power Profile mode to Custom. This option may be useful in some environments that require absolute minimum latency.
Workload Profile (Default = General Power Efficient Compute):
This option allows a user to choose a workload profile that best fits the user`s needs. The workload profiles control many power and performance settings that are relevant to general workload areas. Values for this BIOS option can be:
Minimum Processor Idle Power Core C-State (Default = C6 State):
This option can only be configured if the Workload Profile is set to Custom, or this option is not a dependent value for the Workload Profile. This feature selects the processor's lowest idle power state (C-state) that the operating system uses. The higher the C-state, the lower the power usage of that idle state (C6 is the lowest power idle state supported by the processor). Values for this setting can be:
Memory Patrol Scrubbing (Default = Enabled):
This option allows for correction of soft memory errors. Over the length of system runtime, the risk of producing multi-bit and uncorrected errors is reduced with this option. Values for this BIOS setting can be:
Last updated December 11, 2017.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact info@spec.org
Copyright 2017-2019 Standard Performance Evaluation Corporation
Tested with SPEC CPU2017 v1.0.2.
Report generated on 2019-02-20 20:39:11 by SPEC CPU2017 flags formatter v5178.